
Inducing lexical entries for an incremental semantic
grammar

Arash Eshghi1, Matthew Purver1, Julian Hough1, and Yo Sato2

1 Interaction Media and Communication
School of Electronic Engineering and Computer Science

Queen Mary University of London
{arash,mpurver,jhough}@eecs.qmul.ac.uk

2 Adaptive Systems Research Group
Science and Technology Research Institute

University of Hertfordshire
y.sato@herts.ac.uk

Abstract. We introduce a method for data-driven learning of lexical entries in
an inherently incremental semantic grammar formalism, Dynamic Syntax (DS).
Lexical actions in DS are constrained procedures for the incremental projection
of compositional semantic structure. Here, we show how these can be induced
directly from sentences paired with their complete propositional semantic struc-
tures. Checking induced entries over an artificial dataset generated using a known
grammar demonstrates that the method learns lexical entries compatible with
those defined by linguists, with different versions of the DS framework induced
by varying only general tree manipulation rules. This is achieved without requir-
ing annotation at the level of individual words, via a method compatible with
work on linguistic change and routinisation.

1 Introduction

Dynamic Syntax (DS) is an inherently incremental semantic grammar formalism [1, 2]
in which semantic representations are projected on a word-by-word basis. It recognises
no intermediate layer of syntax (see below), and generation and parsing are interchange-
able. Given these properties, it seems well suited for dialogue processing, and can in
principle model common dialogue phenomena such as unfinished or co-constructed ut-
terances, mid-utterance interruption and clarification etc. [3]. However, its definition in
terms of semantics (rather than the more familiar syntactic phrase structure) makes it
hard to define or extend broad-coverage grammars: expert linguists are required. On
the other hand, as language resources are now available which pair sentences with se-
mantic logical forms (LFs), the ability to automatically induce DS grammars could lead
to a novel and useful resource for dialogue systems. Here, we investigate methods for
inducing DS grammars, and present an initial method for inducing lexical entries from
data paired with complete, compositionally structured, propositional LFs.

From a language acquisition perspective, this problem can be seen as one of con-
straint solving for a child: given (1) the constraints imposed through time by her un-
derstanding of the meaning of linguistic expressions (from evidence gathered from e.g.

39



2

her local, immediate cognitive environment, or interaction with an adult), and (2) in-
nate cognitive constraints on how meaning representations can be manipulated, how
does she go about separating out the contribution of each individual word to the overall
meaning of a linguistic expression? And how does she choose among the many guesses
she would have, the one that best satisfies these constraints?

This paper represents an initial investigation into the problem: the method presented
is currently restricted to a sub-part of the general problem (see below). Future work
will adapt it to a more general and less supervised setting where the input data con-
tains less structure, where more words are unknown in each sentence, and applicable to
real-world datasets – but the work here forms a first important step in a new problem
area of learning explicitly incremental grammars in the form of constraints on semantic
construction.

2 Previous work on grammar induction

Existing grammar induction methods can be divided into two major categories: super-
vised and unsupervised. Fully supervised methods, which use a parsed corpus as the
training data and generalise over the the phrase structure rules to apply to a new set of
data, has achieved significant success, particularly when coupled with statistical esti-
mation of the probabilities for production rules that share the same LHS category (e.g.
PCFGs [4]). However, such methods at best only capture part of the grammar learn-
ing problem, since they presuppose prior linguistic information and are not adequate
as human grammar learning models. Unsupervised methods, on the other hand, which
proceed with unannotated raw data and hence are closer to the human language acquisi-
tion setting, have seen less success. In its pure form —positive data only, without bias—
unsupervised learning has been demonstrated to be computationally too complex (‘un-
learnable’) in the worst case [5]. Successful cases have involved some prior learning or
bias, e.g. a fixed set of known lexical categories, a probability distribution bias [6] or a
hybrid, semi-supervised method with shallower (e.g. POS-tagging) annotation [7].

More recently another interesting line of work has emerged: supervised learning
guided by semantic rather than syntactic annotation – more justifiably arguable to be
‘available’ to a human learner with some idea of what a string in an unknown language
could mean. This has been successfully applied in Combinatorial Categorial Gram-
mar [8], as it tightly couples compositional semantics with syntax [9, 10] and [11] also
demonstrates a limited success of a similar approach with partially semantically an-
notated data that comes from a controlled experiment. Since these approaches adopt
a lexicalist framework, the grammar learning involves inducing a lexicon assigning to
each word its syntactic and semantic contribution.

Such approaches are only lightly supervised, using sentence-level propositional log-
ical form rather than detailed word-level annotation. Also, grammar is learnt ground-up
in an ‘incremental’ fashion, in the sense that the learner collects data and does the
learning in parallel, sentence by sentence. Here we follow this spirit, inducing gram-
mar from a propositional meaning representation and building a lexicon which spec-
ifies what each word contributes to the target semantics. However, taking advantage
of the DS formalism, a distinctive feature of which is word-by-word processing of

40



3

semantic interpretation, we bring an added dimension of incrementality: not only is
learning sentence-by-sentence incremental, but the grammar learned is word-by-word
incremental, commensurate with psycholinguistic results showing incrementality to be
a fundamental feature of human parsing and production [12, 13]. Incremental parsing
algorithms have correspondingly been proposed [14–16], however, to the best of our
knowledge, a learning system for an explicitly incremental grammar is yet to be pre-
sented – this work is a step towards such a system.

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

−→ ?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

−→

?Ty(t)

Ty(e),
john

?Ty(e → t)

?Ty(e),
♦

Ty(e → (e → t)),
λyλx.upset′(x)(y)

−→ Ty(t),♦,
upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Fig. 1. Incremental parsing in DS producing semantic trees: “John upset Mary”

3 Dynamic Syntax

Dynamic Syntax is a parsing-directed grammar formalism, which models the word-
by-word incremental processing of linguistic input. Unlike many other formalisms, DS
models the incremental building up of interpretations without presupposing or indeed
recognising an independent level of syntactic processing. Thus, the output for any given
string of words is a purely semantic tree representing its predicate-argument structure;
tree nodes correspond to terms in the lambda calculus, decorated with labels expressing
their semantic type (e.g. Ty(e)) and formula, with beta-reduction determining the type
and formula at a mother node from those at its daughters (Figure 1).

These trees can be partial, containing unsatisfied requirements for node labels (e.g.
?Ty(e) is a requirement for future development to Ty(e)), and contain a pointer ♦
labelling the node currently under development. Grammaticality is defined as parsabil-
ity: the successful incremental construction of a tree with no outstanding requirements
(a complete tree) using all information given by the words in a sentence. The input
to our induction task here is therefore sentences paired with such complete, semantic
trees, and what we try to learn are constrained lexical procedures for the incremental
construction of such trees.

41



4

3.1 Actions in DS

The central tree-growth process is defined in terms of conditional actions: procedural
specifications for monotonic tree growth. These take the form both of general structure-
building principles (computational actions), putatively independent of any particular
natural language, and of language-specific actions induced by parsing particular lexical
items (lexical actions). The latter are what we here try to learn from data.

Computational actions These form a small, fixed set. Some merely encode the prop-
erties of the lambda calculus itself and the logical tree formalism (LoFT, [17]) – these
we term inferential actions. Examples include THINNING (removal of satisfied require-
ments) and ELIMINATION (beta-reduction of daughter nodes at the mother). These ac-
tions are entirely language-general, cause no ambiguity, and add no new information to
the tree; as such, they apply non-optionally whenever their preconditions are met.

Other computational actions reflect DS’s predictivity and the dynamics of the frame-
work. For example, replacing feature-passing concepts, e.g. for long-distance depen-
dency, *ADJUNCTION introduces a single unfixed node with underspecified tree po-
sition; LINK-ADJUNCTION builds a paired (“linked”) tree corresponding to semantic
conjunction and licensing relative clauses, apposition and more. These actions repre-
sent possible parsing strategies and can apply optionally at any stage of a parse if their
preconditions are met. While largely language-independent, some are specific to lan-
guage type (e.g. INTRODUCTION-PREDICTION in the form used here applies only to
SVO languages).

Lexical actions The lexicon associates words with lexical actions, which like computa-
tional actions, are each a sequence of tree-update actions in an IF..THEN..ELSE format,
and composed of explicitly procedural atomic actions like make, go, put (and others).
make creates a new daughter node. go moves the pointer to a daughter node, and put
decorates the pointed node with a label. Fig. 2 shows a simple lexical action for John.
The action says that if the pointed node (marked as ♦) has a requirement for type e,
then decorate it with type e (thus satisfying the requirement); decorate it with formula
John′ and finally decorate it with the bottom restriction 〈↓〉⊥ (meaning that the node
cannot have any daughters). In case the IF condition ?Ty(e) is not satisfied, the action
aborts, meaning that the word ‘John’ cannot be parsed in the context of the current tree.

Action Input tree Output tree

John

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′)
put(〈↓〉⊥)

ELSE ABORT

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

John−→ ?Ty(t)

Ty(e), ?Ty(e)
John′, 〈↓〉⊥,♦

?Ty(e → t)

Fig. 2. Lexical action for the word ‘John’

42



5

3.2 Graph Representation of DS Parsing

Given a sequence of words (w1, w2, ..., wn), the parser starts from the axiom tree T0

(a requirement ?Ty(t) to construct a complete tree of propositional type), and applies
the corresponding lexical actions (a1, a2, . . . , an), optionally interspersing computa-
tional actions – see Figure 1. [18] shows how this parsing process can be modelled on
a Directed Acyclic Graph (DAG), rooted at T0, with partial trees as nodes, and compu-
tational and lexical actions as edges (i.e. transitions between trees):

T0

T1intro T2

pred
T3

‘john’

T1′*Adj T2′
‘john’

T3′
intro

T4′
pred

T5′

In this DAG, intro, pred and *Adj correspond to the computational actions INTRO-
DUCTION, PREDICTION and *-ADJUNCTION respectively; and ‘john’ is a lexical ac-
tion. Different paths through the DAG represent different parsing strategies, which may
succeed or fail depending on how the utterance is continued. Here, the path T0 − T3

will succeed if ‘John’ is the subject of an upcoming verb (“John upset Mary”); T0 − T4

will succeed if ‘John’ turns out to be a left-dislocated object (“John, Mary upset”).
This DAG is taken to represent the linguistic context available during a parse, used

for ellipsis and pronominal construal [19, 20]. It also provides us with a basis for imple-
menting a best-first probabilistic parser, by taking the current DAG, plus a backtracking
history, as the parse state. Given a conditional probability distribution P (ai|f(t)) over
possible actions ai given a set of features of the current partial tree f(t), the DAG
is then incrementally constructed and traversed such that at any node (partial tree), the
most likely action (edge) is traversed first, with backtracking allowing other possibilities
to be explored. Estimation of this probability distribution is not a problem we address
here – we assume a known probability distribution for the known grammar fragment.

4 Learning lexical actions

4.1 Assumptions and Problem Statement

Assumptions. Our task here is data-driven learning of lexical actions for unknown
words. Throughout, we will assume that the (language-independent) computational ac-
tions are known. To make the problem tractable at this initial stage, we further make
the following simplifying assumptions: (1) The supervision information is structured:
i.e. our dataset pairs sentences with the DS tree that expresses their predicate-argument
structure – rather than just a less structured Logical Form as in e.g. [9] (Note that this
does not provide word-level supervision: nodes do not correspond to words here) (2)
The training data does not contain any pronouns or ellipsis (3) We have a seed lexicon
such that there are no two adjacent words whose lexical actions are unknown in any
given training example. As we will see this will help determine where unknown actions

43



6

begin and end. We will examine the elimination of this assumption below. Relaxing any
of these assumptions means a larger hypothesis space.

Input. The input to the induction procedure to be described is now as follows:
– the set of computational actions in Dynamic Syntax, G.
– a seed lexicon Ls: a set of words with their associated lexical actions that are taken

to be known in advance.
– a set of training examples of the form 〈Si, Ti〉, where Si is a sentence of the lan-

guage and Ti – henceforth referred to as the target tree – is the complete semantic
tree representing the compositional structure of the meaning of Si.

Target. The output is the lexical actions associated with previously unknown words.
We take these to be conditioned solely on the semantic type of the pointed node (i.e.
their IF clause takes the form IF ?Ty(X)). This is true of most lexical actions in DS
(see examples above), but not all. This assumption will lead to some over-generation:
inducing actions which can parse some ungrammatical strings.The main output of the
induction algorithm is therefore the THEN clauses of the unknown actions: sequences
of DS atomic actions such as go, make, and put (see Fig. 2). We refer to these sequences
as lexical hypotheses. We first describe our method for constructing lexical hypotheses
with a single training example (a sentence-tree pair). We then discuss how to generalise
over and refine these outputs incrementally as we process more training examples.
4.2 Hypothesis construction

DS is strictly monotonic: actions can only extend the tree under construction, deleting
nothing except satisfied requirements. Thus, hypothesising lexical actions consists in
an incremental search through the space of all monotonic extensions of the current tree
Tcur that subsume (i.e. can be extended to) the target tree Tt. Not all possible trees and
tree extensions are well-formed (meaningful) in DS, making the search constrained to
a degree. The constraints are: (1) Lexical actions add lexical content —formula & type
labels together— only to leaf nodes with the corresponding type requirement. Non-
terminal nodes can thus only be given type requirements (later receiving their type and
content via beta-reduction); (2) Leaf nodes can only be decorated by one lexical action,
i.e. once a leaf node receives its semantic content, no lexical action will return to it
(anaphora, excluded here, is an exception); (3) Once a new node is created, the pointer
must move to it immediately and decorate it with the appropriate type requirement.

The process of hypothesis construction proceeds by locally and incrementally ex-
tending Tcur, using sequences of make, go, and put operations as appropriate and
constrained as above, each time taking Tcur one step closer to the target tree, Tt, at
each stage checking for subsumption of Tt.This means that lexical actions are not hy-
pothesised in one go, but left-to-right, word-by-word.

Hypothesis construction for unknown words is thus interleaved with parsing known
words on the same DAG: Given a single training example, 〈(w1, . . . , wn), Tt〉, we be-
gin parsing from left to right. Known words are parsed as normal; when some unknown
wi is encountered, (wi, . . . , wn) is scanned until the next known word wj is found
or the end of the word sequence is reached (i.e. j = n). We then begin hypothesis-
ing for wi, . . . , wj−1, incrementally extending the tree and expanding the DAG, using

44



7

both computational actions, and hypothesised lexical tree extensions until we reach a
tree where we can parse wj . This continues until the tree under development equals
the target tree. All such possibilities are searched depth-first via backtracking until no
backtracking is possible, resulting in a fully explored hypothesis DAG. Successful DAG
paths (i.e. those that lead from the axiom tree to the target tree) thus provide the success-
ful hypothesised lexical sub-sequences; these, once refined, become the THEN clauses
of the induced lexical actions.

For unknown words, possible tree extensions are hypothesised as follows. Given the
current tree under construction Tcur and a target tree Tt, possible sequences of atomic
actions (e.g. go, put, make) are conditioned on the node Nt in Tt which corresponds
to – has the same address as – the pointed node Ncur in Tcur. If Nt is a leaf node,
we hypothesise put operations which add each label on Nt not present on Ncur, thus
unifying them. Otherwise, we hypothesise adding an appropriate type requirement fol-
lowed by make, go and put operations to add suitable daughters.

?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

Ty(t),
upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Fig. 3. The tree under development Tcur (left) and the target tree Tt (right)

Figure 3 shows an example. Here, Tt is the complete tree on the right, and Tcur the
partial tree on the left. Since Tcur’s pointed node corresponds to a non-leaf node in Tt,
we hypothesise two local action sequences: one which builds an argument daughter with
appropriate type requirement (make(↓0);go(↓0);put(?Ty(e))), and another which
does the same for a functor daughter (make(↓1);go(↓1);put(?Ty(e→ (e→ t))).

This method produces, for each training example 〈Si, Ti〉, a hypothesis DAG repre-
senting all possible sequences of actions that lead from an Axiom tree to the associated
target tree, Ti, using known lexical actions for known sub-strings of Si, new hypothe-
sised lexical actions for unknown sub-strings, and the known computational actions of
DS. Such a DAG is in effect a mapping from the unknown word sub-strings of Si into
sequences of local action hypotheses plus general computational actions that may have
applied between words.

This method does not in principle require us to know any of the words in a given
training example in advance if we employed some method of ‘splitting’ sequences asso-
ciated with more than one adjacent word (a tactic employed in [10] as well as [11]). We
will discuss this possibility in the next section, but currently, since producing a compact
lexicon requires us to generalise over these action sequence hypotheses, we opt for the
simpler alternative of assuming that in any pair of adjacent words one of them is known.

45



8

First Training Example: ‘john’ in subject position:

S invisible

CA:intro Finvisible

CA:predict
invisible

LH:put(Ty(e));put(fo(John’))
invisible

CA:thin
invisible

CA:complete CA:anticip

Second Training Example: ‘john’ on unfixed node, i.e. left-dislocated object:

S invisible

LH:put(Ty(e));put(fo(John’)) F

invisibleCA:anticip

invisible

CA:intro

invisible invisible

CA:intro CA:predict
invisible

CA:thin CA:complete

invisible

CA:pred
invisible

CA:star-adj

Third training example: ‘john’ before parsing relative clause ‘who. . . ’:

S invisible

LH:put(Ty(e));put(fo(John’)) F

invisible
CA:complete

invisible

CA:link-adj

invisible invisible

CA:intro CA:predict
CA:thin

invisibleCA:anticip

invisible

CA:intro
invisible

CA:pred

invisible

CA:star-adj

Fig. 4. Incremental intersection of candidate sequences

4.3 Hypothesis generalisation and refinement
Hypotheses produced from a single training example are unlikely to generalise well to
other unseen examples: words occur at different syntactic/semantic positions in differ-
ent training examples. We therefore require a method for the incremental, example-by-
example refinement and generalisation of the action hypotheses produced for the same
unknown word in processing different 〈S, Tt〉 pairs as above.

DS’s general computational actions can apply at any point before or after the appli-
cation of a lexical action, thus providing strategies for adjusting the syntactic context
in which a word is parsed. We can exploit this property to generalise over our lexical
hypotheses: by partitioning a sequence into sub-sequences which can be achieved by
computational actions, and sub-sequences which must be achieved lexically. Removing
the former will leave more general lexical hypotheses.

However, we need a sequence generalisation method which not only allows com-
putational action subsequences to be removed when this aids generalisation, but also
allows them to become lexicalised when generalisation is not required – i.e. when all
observed uses of a word involve them3. For example, the parsing of relative clauses in
current DS grammars involves the computational action LINK-ADJUNCTION building
a paired tree. Parse DAGs for sentences including relatives will therefore include LINK-
ADJUNCTION in all successful paths. If every observed use of the relative pronoun who
is now associated with a sequence containing LINK-ADJUNCTION, this computational
action can become part of its lexical entry, thus increasing parsing efficiency.
Generalisation through sequence intersection. The hypothesis construction process
above produces a set of parse/hypothesis DAGs, Di, from a corresponding set of train-
ing examples, 〈Si = (w1, . . . , wn), Ti〉. Each of these provides a mapping, CSi(w),
from any unknown word w /∈ Ls in Si (where Ls is the seed lexicon), into a set of
sequences of (partial) trees, connected by candidate sequences of actions (see Figure
4) made up of both computational actions and the local lexical hypotheses (marked as

3 See e.g. [21] for an explanation of syntactic change via calcification or routinisation, whereby
repeated use leads to parsing strategies becoming fixed within some lexical domain.

46



9

“LH” in Figure 4). Given our first simplifying assumption from Section 4.1 above, these
candidate sequences must always be bounded on either side by known lexical actions.
As we process more training examples, the set of candidate sequences for w grows
as per: CS(w) =

⋃i
n=1 CSi(w). The problem now is one of generalisation over the

candidate sequences in CS(w).
Generalisation over these sequences proceeds by removing computational actions

from the beginning or end of any sequence. We implement this via a single packed data-
structure which we term the generalisation DAG, as shown in Figure 4: a representation
of the full set of candidate sequences via their intersection (the central common path)
and differences (the diverging paths at beginning and end), under the constraint that
these differences consist only of computational actions. Nodes here therefore no longer
represent single trees, but sets of trees. As new candidate sequences are added from new
training examples, the intersection is reduced. Figure 4 shows this process over three
training examples containing the unknown word ‘john’ in different syntactic positions.
The ‘S’ and ‘F’ nodes here mark the start and finish of the current intersection subse-
quence –initially the entire sequence. As new training examples arrive, the intersection –
the maximal common path – is reduced as appropriate. Lexical hypotheses thus remain
as general as possible, with initial/final action sub-sequences which depend on syntac-
tic context delegated to computational actions, but computational actions that always
precede or follow a sequence of lexical hypotheses becomng lexicalised, as desired.

Eventually, the intersection is then taken to form the THEN clause of the new
learned lexical entry. The IF clause is a type requirement, obtained from the pointed
node on all partial trees in the ‘S’ node beginning the intersection sequence. As lexical
hypotheses within the intersection are identical, and lexical hypotheses are constrained
to add type information before formula information (see Section 4.2), any type infor-
mation must be common across these partial trees. In Figure 4 for ‘john’, this is ?Ty(e),
i.e. a requirement for type e, common to all three training examples.4

Lexical Ambiguity. Of course, it may well be that a new candidate sequence for w
cannot be intersected with the current generalisation DAG for w (i.e. the intersection
is the null sequence). Such cases indicate differences in lexical hypotheses rather than
in syntactic context – either different formula/type decoration (polysemy) or different
structure (multiple syntactic forms) – and thus give rise to lexical ambiguity, with a new
generalisation DAG and lexical entry being created.

Splitting Lexical Items. Our assumption that no two adjacent words are unknown in any
training example reduces the hypothesis space: candidate sequences correspond to sin-
gle words and have known bounds. Relaxing this assumption can proceed in two ways:
either by hypothesising candidate action sequences for multi-word sequences, and then
hypothesising a set of possible word-boundary breaks (see e.g. [10, 11]); or by hypothe-
sising a larger space of lexically distinct candidate sequences for each word. Due to the
incremental nature of DS, hypotheses for one word will affect the possibilities for the
next, so connections between lexical hypotheses for adjacent words must be maintained
as the hypotheses are refined; we leave this issue to one side here.

4 As we remove our simplifying assumptions, IF conditions must be derived by generalising
over all features of the partial trees in the start node. We do not address this here.

47



10

5 Testing and Evaluation

We have tested a computational implementation of this method over a small, artificial
data set: following [22] we use an existing grammar/lexicon to generate sentences with
interpretations (complete DS trees), and test by removing lexical entries and compar-
ing the induced results. As an initial proof of concept, we test on two unknown words:
‘cook’ (in both transitive and intransitive contexts) and ‘John’ (note that results gener-
alise to all words of these types); the dataset consists of the following sentences paired
with their semantic trees: (1) ‘John likes Mary’ (2) ‘John, Mary likes’ (3) ‘Mary likes
John’ (4) ‘Bill cooks steak’ (5) ‘Pie, Mary cooks’ (6) ‘Bill cooks’. (1), (2) and (3) have
‘John’ in subject, left-dislocated object, and object positions respectively. The struc-
turally ambiguous verb ‘cooks’ was chosen to test the ability of the system to distin-
guish between its different senses.

Original Induced

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′))
put(〈↓〉 ⊥)

ELSE ABORT

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′))
put(〈↓〉 ⊥)
delete(?Ty(e))

ELSE ABORT

Fig. 5. Original and Induced lexical actions for ‘John’

The original and learned lexical actions for a proper noun (‘John’) are shown in Fig-
ure 5. The induced version matches the original with one addition: it deletes the satisfied
?Ty(e) requirement, i.e. it lexicalises the inferential computational action THINNING
(see Figure 4: THINNING occurs in all observed contexts, hence its lexicalisation).

Verbs provide a stronger test case. In the original conception of DS [1], the compu-
tational actions INTRODUCTION and PREDICTION (together, INTRO-PRED) were taken
to build argument and functor daughters of the root Ty(t) node in English, accounting
for the strict SVO word order and providing a node of Ty(e→ t) as trigger for the verb.
However, more recent variants [23] have abandoned INTRO-PRED in favour of a more
language-general LOCAL*-ADJUNCTION rule, motivated independently for Japanese
and all languages with NP clustering and scrambling (see [2], chapter 6).5 Such variants
require markedly different lexical actions for verbs, triggered by ?Ty(t) and building a
complete propositional template while merging in argument nodes already constructed.

We therefore test verb induction given different sets of computational actions (i.e.
one with LOCAL*-ADJUNCTION, one with INTRO-PRED). Fig. 6 shows the results for a
transitive verb: the induced actions match the original manually defined actions for both
variants, given only this change in the general computational actions available. With
INTRO-PRED, the induced action is triggered by ?Ty(e→ t) and does not need to build
the root node’s daughters; with LOCAL*-ADJUNCTION, the action builds a complete
propositional template triggered by ?Ty(t), and merges the unfixed node introduced by
LOCAL*-ADJUNCTION into its appropriate subject position.

5 This rule allows the addition of a second local unfixed node with its merge point restricted to
any argument position. See [23, 2] for details.

48



11

Moreover, in the sequence intersection stage of our method, the action for the in-
transitive ‘cook’ (from training sentence (6), but not included here for reasons of space)
was successfully distinguished from that of the transitive form in Fig. 6; the candidate
sequences induced from sentences (4) and (5) were incompatible with those from (6),
and thus resulted in a null intersection, giving rise to two separate lexical entries.

Original Induced with Intro-Pred Induced with Local*-Adj

IF ?Ty(e → t)
THEN make(↓1); go(↓1)

put(Fo(λyλx.cook(x, y)))
put(Ty(e → (e → t)))
put(〈↓〉 ⊥)
go(↑);make(↓0); go(↓0)
put(?Ty(e))

ELSE ABORT

IF ?Ty(e → t)
THEN make(↓1); go(↓1)

put(?Ty(e → (e → t)))
put(Fo(λyλx.cook(x, y)))
put(Ty(e → (e → t)))
put(〈↓〉 ⊥)
delete(?Ty(e → (e → t)))
go(↑);make(↓0); go(↓0)
put(?Ty(e))

ELSE ABORT

IF ?Ty(t)
THEN make(↓0); go(↓0)

put(?Ty(e))
merge
make(↓1); go(↓1)
put(?Ty(e → t))
make(↓1); go(↓1)
put(?Ty(e → (e → t)))
put(Fo(λyλx.cook(x, y)))
put(Ty(e → (e → t)))
delete(?Ty(e → (e → t)))
go(↑);make(↓0); go(↓0)
put(?Ty(e))

ELSE ABORT

Fig. 6. Original and Induced lexical actions for transitive ‘cook’

6 Conclusions and Future work

In this paper we have outlined a novel method for the induction of new lexical entries
in an inherently incremental and semantic grammar formalism, Dynamic Syntax, with
no independent level of syntactic phrase structure. Methods developed for other non-
incremental or phrase-structure-based formalisms could not be used here. Our method
learns from sentences paired with semantic trees representing the sentences’ predicate-
argument structures: hypotheses for possible lexical action subsequences are formed
under the constraints imposed by the known sentential semantics and by general facts
about tree dynamics. Its success on an artificially generated dataset shows that it can
learn new lexical entries compatible with those defined by linguists, with different vari-
ants of the DS framework inducible by varying only general tree manipulation rules.

Our research now focusses on relaxing our simplifying assumptions and applying
to real data. Firstly, we are developing the method to remove the assumptions limiting
the number of unknown words. Secondly, the induction method here is more super-
vised than we would like; work is under way to adapt the same method to learn from
sentences paired not with trees but with less structured LFs using Type Theory with
Records [24] and/or the lambda calculus, for which corpora are available. Other work
planned includes integrating this method with the learning of conditional probability
distributions over actions, to provide a coherent practical model of parsing and induc-
tion with incremental updates of both the lexical entries themselves and the parameters
of the parsing model.

49



12

References
1. Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Syntax: The Flow of Language Under-

standing. Blackwell (2001)
2. Cann, R., Kempson, R., Marten, L.: The Dynamics of Language. Elsevier, Oxford (2005)
3. Gargett, A., Gregoromichelaki, E., Kempson, R., Purver, M., Sato, Y.: Grammar resources

for modelling dialogue dynamically. Cognitive Neurodynamics 3(4) (2009) 347–363
4. Charniak, E.: Statistical Language Learning]. MIT Press (1996)
5. Gold, E.M.: Language identification in the limit. Information and Control 10(5) (1967)

447–474
6. Klein, D., Manning, C.D.: Natural language grammar induction with a generative

constituent-context mode. Pattern Recognition 38(9) (2005) 1407–1419
7. Pereira, F., Schabes, Y.: Inside-outside reestimation from partially bracketed corpora. In:

Proc. 30th Meeting of the Association for Computational Linguistics. (1992) 128–135
8. Steedman, M.: The Syntactic Process. MIT Press, Cambridge, MA (2000)
9. Zettlemoyer, L., Collins, M.: Online learning of relaxed CCG grammars for parsing to logical

form. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL). (2007)

10. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing probabilistic CCG
grammars from logical form with higher-order unification. In: Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing. (2010) 1223–1233

11. Sato, Y., Tam, W.: Underspecified types and semantic bootstrapping of common nouns and
adjectives. In: Proc. Language Engineering and Natural Language Semantics. (2012)

12. Lombardo, V., Sturt, P.: Incremental processing and infinite local ambiguity. In: Proceedings
of the 1997 Cognitive Science Conference. (1997)

13. Ferreira, F., Swets, B.: How incremental is language production? evidence from the pro-
duction of utterances requiring the computation of arithmetic sums. Journal of Memory and
Language 46 (2002) 57–84

14. Hale, J.: A probabilistic Earley parser as a psycholinguistic model. In: Proc. 2nd Conference
of the North American Chapter of the Association for Computational Linguistics. (2001)

15. Collins, M., Roark, B.: Incremental parsing with the perceptron algorithm. In: Proceedings
of the 42nd Meeting of the ACL. (2004) 111–118

16. Clark, S., Curran, J.: Wide-coverage efficient statistical parsing with CCG and log-linear
models. Computational Linguistics 33(4) (2007) 493–552

17. Blackburn, P., Meyer-Viol, W.: Linguistics, logic and finite trees. Logic Journal of the
Interest Group of Pure and Applied Logics 2(1) (1994) 3–29

18. Sato, Y.: Local ambiguity, search strategies and parsing in Dynamic Syntax. In: The Dy-
namics of Lexical Interfaces. CSLI (2010) to appear.

19. Cann, R., Kempson, R., Purver, M.: Context and well-formedness: the dynamics of ellipsis.
Research on Language and Computation 5(3) (2007) 333–358

20. Purver, M., Eshghi, A., Hough, J.: Incremental semantic construction in a dialogue system.
In: Proc. of the 9th International Conference on Computational Semantics. (2011) 365–369

21. Bouzouita, M.: At the syntax-pragmatics interface: clitics in the history of spanish. In: Lan-
guage in Flux: Dialogue Coordination, Language Variation, Change and Evolution. College
Publications, London (2008) 221–264

22. Pulman, S.G., Cussens, J.: Grammar learning using inductive logic programming. Oxford
University Working Papers in Linguistics 6 (2001)

23. Cann, R.: Towards an account of the english auxiliary system: building interpretations incre-
mentally. In: Dynamics of Lexical Interfaces. Chicago: CSLI Press (2011)

24. Cooper, R.: Records and record types in semantic theory. Journal of Logic and Computation
15(2) (2005) 99–112

50


