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Dialogue is Incremental

A real dialogue system problem

A: I want to go to . . .
B: Uh-huh
A: Paris.
B: OK. Let’s see . . .
A: By train. Tomorrow.
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B: Uh-huh
A: Paris.
B: OK. Let’s see . . .
A: By train. Tomorrow.

People don’t speak in “complete” sentences - many
instances of fragments and ellipsis

Nearly 20% of BNC “sentences” continue another
“sentence” [Purver et al., 2009]
Over 70% continue something already apparently complete
Pauses, role changes, backchannels, continuations . . .

Computational linguistic processing models have some
way to catch up!. . .
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What we need. . .

An incremental grammar formalism for parsing and
generation
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Dynamic Syntax: an incremental formalism

Dynamic Syntax [Kempson et al., 2001]:
an incremental grammar framework
word-by-word monotonic growth of semantic representation
grammaticality is constraints on construction process
bidirectional: generation in terms of parsing
one of its principles is underspecification and update, which
make it very good for ellipsis and anaphora resolution
recently been used to model split utterance/compound
contributions [Purver et al., 2010]

Split Turn Taking Puzzle

A: Did you . . .
B: Burn myself?
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Dynamic Syntax: an action-based formalism

Words are represented as lexical actions which are
packages of tree update operations
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e.g. verbs introduce partial propositional templates:

like

IF ?Ty(e → t)
THEN make(〈↓1〉);go(〈↓〉);

put(Fo(Like′),
Ty(e → (e → t)))
go(〈↑1〉); make(〈↓0〉);
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like

IF ?Ty(e → t)
THEN make(〈↓1〉);go(〈↓〉);

put(Fo(Like′),
Ty(e → (e → t)))
go(〈↑1〉); make(〈↓0〉);
go(〈↓0〉); put(?Ty(e))

ELSE ABORT

?Ty(e → t)

?Ty(e)
♦

Ty(e → (e → t))
Like′

Computational actions are general rules that can be fired
independently of lexical actions. They give DS predictivity
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Building a tree incrementally: “John likes Mary”

Processing John likes Mary

?Ty(t),Tn(0), ♦
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Building a tree incrementally: “John likes Mary”

Processing John likes Mary
‘John likes Mary’

Like′(Mary ′)(John′)
Ty(t),Tn(0), ♦

Ty(e)
John′

Like′(Mary ′)
Ty(e → t)

Ty(e)
Mary ′

Like′
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Dynamic Syntax parsing process in the DyLAN parser

For a word wi and the parser state at step i as a set of
partial trees Si :

The parsing process

1 Apply all lexical actions ai corresponding to wi to each partial
tree in Si−1. For each application that succeeds, add the
resulting partial tree to Si

2 For each tree in Si , apply all possible sequences of
computational actions and add the result to Si

DS parsing can also be seen as a tree lattice [Sato, 2010]
Nodes = trees
Edges = lexical/computational actions
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DS DAG
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DS DAG

AXIOM

T2
*adjunct

T1
intro

axiom

T11
predict
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DS DAG

“John”

AXIOM

T2

*adjunct

T1
intro

axiom

T11 T111
LEX=’john’

T111111

T21LEX=’john’ T2111

T211211

T213

predict
T1111 T11111

complete anticipthin

thin

T211
thin complete

T2112

complete

T21121
intro predict

T3
LEX=’john’
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DS DAG

“John” “Mary”

AXIOM

T2

*adjunct

T1
intro

axiom

T11 T111
LEX=’john’

T111111 T1111111
LEX=’mary’

T21LEX=’john’ T2111 T21111
LEX=’mary’

T211211 T2112111
LEX=’mary’

T213 T2131
LEX=’mary’

predict
T1111

T11111
complete

anticip
thin

thin

T211
thin complete

T2112

complete

T21121
intro predict

T3
LEX=’john’
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Context in terms of a DS DAG parse state
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Context in terms of a DS DAG parse state

Syntactic context can be seen as the path back to the root
node (axiom)

Following this path will give you trees, words and actions
Going back in context and “re-running” these actions can
allow the parsing of ellipsis

“John likes Mary. Bill does too”

Underspecified semantic placeholders can be integrated
through backtracking triggers like do-auxilliaries and
pronouns
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TTR and DS

Recent work integrating DS with Type Theory with Records
(TTR) [Cooper, 2005]

[

x : john
p : leave(x)

]

[

x : john
]

λ
[

x : e
]

.

[

x : e
p : leave(x)

]
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TTR and DS

Recent work integrating DS with Type Theory with Records
(TTR) [Cooper, 2005]

[

x : john
p : leave(x)

]

[

x : john
]

λ
[

x : e
]

.

[

x : e
p : leave(x)

]

TTR record types provide the semantic content of each
node of the DS trees

LINKed trees for adjunction are easily incorporated by
extending record types

Recently, a Davidsonian [Davidson, 1980] event-based
semantics for tense has been incorporated [Cann, 2010]
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Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:
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Using TTR we can get incrementally constructed record
types from our trees:

I want to go . . .













e = now : es

e1 = future : es

x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t













Trip :
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Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

I want to go to Paris
. . .





















e = now : es

e1 = future : es

x1 = Paris : e
p2 = to(e1, x1) : t
x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t





















Trip :
to = paris
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Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

I want to go to Paris
from London . . .





























e = now : es

e1 = future : es

x1 = Paris : e
p2 = to(e1, x1) : t
x2 = London : e
p3 = from(e1, x2) : t
x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t





























Trip :
to = paris
from = london
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Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

I want to go to Paris
from London . . .





























e = now : es

e1 = future : es

x1 = Paris : e
p2 = to(e1, x1) : t
x2 = London : e
p3 = from(e1, x2) : t
x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t





























Trip :
to = paris
from = london

Provides a nice interface between Dynamic Syntax ↔
domain semantic frames
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Jindigo: An incremental dialogue system

[Schlangen and Skantze, 2009] have introduced Jindigo, a
flexible incremental dialogue system framework

Modular, with incremental units being passed from one to
another, notion of commitment

Parsing, generation and dialogue management being
currently worked on [Buß et al., 2010,
Schlangen et al., 2010, Skantze and Hjalmarsson, 2010]

Incremental speech recognition:

SA S1
i

S2
want

S3a SB
ticket

S3′to S4′

take
it

A DS DAG could interface with this?. . .

Hough, Purver, Eshghi KCL 2011 16/24



Jindigo: incoporating incremental semantics

With purely phonological accounts of incremental input
processing, mid-utterance backchannels, unfinished
utterances become possible in micro domains
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Jindigo: incoporating incremental semantics

With purely phonological accounts of incremental input
processing, mid-utterance backchannels, unfinished
utterances become possible in micro domains
But utterance meaning treated non-incrementally:

A standard dialogue systems approach of one move per
utterance, fragment resolution mechanisms
Not much in the way of semantics

A domain-general incremental semantics is needed for
various dialogue phenomena

Hough, Purver, Eshghi KCL 2011 17/24



Putting voice recognition and DS parsing together

DS ↔ ASR in Jindigo
Incremental word lattice subsumes finer grained
incremental parse lattice

“Big” word hypothesis edges from the ASR subsume the
“thin” lexical/computational action edges from parsing
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incremental parse lattice
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“thin” lexical/computational action edges from parsing

SA

S1
intro

S2

pred
SB

“john”

S1′ S2′

“john”
S3′

intro
S4′

pred
SB′
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Putting voice recognition and DS parsing together

DS ↔ ASR in Jindigo
Incremental word lattice subsumes finer grained
incremental parse lattice

“Big” word hypothesis edges from the ASR subsume the
“thin” lexical/computational action edges from parsing

SA

S1
intro

S2

pred
SB

“john”

S1′ S2′

“john”
S3′

intro
S4′

pred
SB′

StA StB

“john”

The best parse hypothesis will be committed when it is
grounded in a committed ASR hypothesis
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DS and TTR for domain concepts in Jindigo
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DS and TTR for domain concepts in Jindigo

Currently complete DS trees have TTR representations

Work on making the TTR representation completely
incremental has begun

These TTR representations are matched to domain
concept frames(e.g. Trip(to:City[Paris])). Another
level of semantic incrementality

When concept frames are matched successfully, they are
committed to the output buffer

Extending the record types through LINK adjunction in DS
is straightforward

The parse state is maintained, so new trees and new
record types can be introduced and replace a revoked
domain frame concept
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Generation

Bidirectional quality of DS. Work is being done on
developing the system’s generation (NLG) module

recent incremental generation work is being done in terms
of speech plans [Skantze and Hjalmarsson, 2010]
not yet in terms of online syntactic/semantic construction
during generation
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not yet in terms of online syntactic/semantic construction
during generation

The DS Generation process [Purver and Kempson, 2004]
uses the same action-based mechanism as parsing, but
with a goal tree

each parse state is checked and trees kept which subsume
the goal, successful lexical action = generated word
As the generator and parser can have access to the same
parse state lattice, split utterances/compound contributions
should follow straightforwardly according to the
[Purver et al., 2010] account
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Generation

Bidirectional quality of DS. Work is being done on
developing the system’s generation (NLG) module

recent incremental generation work is being done in terms
of speech plans [Skantze and Hjalmarsson, 2010]
not yet in terms of online syntactic/semantic construction
during generation

The DS Generation process [Purver and Kempson, 2004]
uses the same action-based mechanism as parsing, but
with a goal tree

each parse state is checked and trees kept which subsume
the goal, successful lexical action = generated word
As the generator and parser can have access to the same
parse state lattice, split utterances/compound contributions
should follow straightforwardly according to the
[Purver et al., 2010] account

This is work in progress!
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Module interaction: sharing tree lattices

Tree lattice “parse state” part of generation process, so can
be shared between modules. . .
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Module interaction: sharing tree lattices

Tree lattice “parse state” part of generation process, so can
be shared between modules. . .

I want to go
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Jindigo demo

[Jindigo demo]
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Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible
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Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such
this is for television it’s a

we have a market range of Interna...
like it’s an International Market Range

the incremental goal tree subsumption checking of the DS
generation process [Purver and Kempson, 2004]
repair strategy: if a new goal tree from a dialogue manager
does not subsume the current one, backtrack through the
context DAG until a tree is found where subsumption does
occur and then start generating again from there
error causes: possible information flow deadlocks between
jindigo modules
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Thanks for listening!

Thanks to:

Ruth Kempson, Pat Healey, Christine Howes,

Graham White, Eleni Gregoromichelaki, Yo Sato
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