
Dynamic Representation of Conversation
in a Dialogue System

Julian Hough, Matthew Purver, Arash Eshghi

Interaction, Media and Communication
School of Electronic Engineering and Computer Science

Queen Mary University of London
www.eecs.qmul.ac.uk/research/imc

The Dynamics of Conversational Dialogue (DynDial)
www.kcl.ac.uk/research/groups/ds

King’s College London. March 31st, 2011

Hough, Purver, Eshghi KCL 2011 1/24



Dialogue is Incremental

A real dialogue system problem

A: I want to go to . . .
B: Uh-huh
A: Paris.
B: OK. Let’s see . . .
A: By train. Tomorrow.

Hough, Purver, Eshghi KCL 2011 2/24



Dialogue is Incremental

A real dialogue system problem

A: I want to go to . . .
B: Uh-huh
A: Paris.
B: OK. Let’s see . . .
A: By train. Tomorrow.

People don’t speak in “complete” sentences - many
instances of fragments and ellipsis

Nearly 20% of BNC “sentences” continue another
“sentence” [Purver et al., 2009]
Over 70% continue something already apparently complete
Pauses, role changes, backchannels, continuations . . .

Hough, Purver, Eshghi KCL 2011 2/24



Dialogue is Incremental

A real dialogue system problem

A: I want to go to . . .
B: Uh-huh
A: Paris.
B: OK. Let’s see . . .
A: By train. Tomorrow.

People don’t speak in “complete” sentences - many
instances of fragments and ellipsis

Nearly 20% of BNC “sentences” continue another
“sentence” [Purver et al., 2009]
Over 70% continue something already apparently complete
Pauses, role changes, backchannels, continuations . . .

Computational linguistic processing models have some
way to catch up!. . .

Hough, Purver, Eshghi KCL 2011 2/24



What we need. . .

An incremental grammar formalism for parsing and
generation

Hough, Purver, Eshghi KCL 2011 3/24



What we need. . .

Dynamic Syntax

An incremental grammar formalism for parsing and
generation

Dynamic Syntax [Kempson et al., 2001]

Hough, Purver, Eshghi KCL 2011 3/24



What we need. . .

Dynamic Syntax

An incremental grammar formalism for parsing and
generation

Dynamic Syntax [Kempson et al., 2001]

A data structure to interface linguistic processing with
domain semantics

Hough, Purver, Eshghi KCL 2011 3/24



What we need. . .

Dynamic Syntax + TTR

An incremental grammar formalism for parsing and
generation

Dynamic Syntax [Kempson et al., 2001]

A data structure to interface linguistic processing with
domain semantics

Type Theory with Records (TTR) [Cooper, 2005]

Hough, Purver, Eshghi KCL 2011 3/24



What we need. . .

Dynamic Syntax + TTR

An incremental grammar formalism for parsing and
generation

Dynamic Syntax [Kempson et al., 2001]

A data structure to interface linguistic processing with
domain semantics

Type Theory with Records (TTR) [Cooper, 2005]

An incremental dialogue framework

Hough, Purver, Eshghi KCL 2011 3/24



What we need. . .

Dynamic Syntax + TTR + Jindigo

An incremental grammar formalism for parsing and
generation

Dynamic Syntax [Kempson et al., 2001]

A data structure to interface linguistic processing with
domain semantics

Type Theory with Records (TTR) [Cooper, 2005]

An incremental dialogue framework
Jindigo [Schlangen and Skantze, 2009]

Hough, Purver, Eshghi KCL 2011 3/24



Dynamic Syntax: an incremental formalism

Dynamic Syntax [Kempson et al., 2001]:

Hough, Purver, Eshghi KCL 2011 4/24



Dynamic Syntax: an incremental formalism

Dynamic Syntax [Kempson et al., 2001]:
an incremental grammar framework
word-by-word monotonic growth of semantic representation
grammaticality is constraints on construction process
bidirectional: generation in terms of parsing
one of its principles is underspecification and update, which
make it very good for ellipsis and anaphora resolution
recently been used to model split utterance/compound
contributions [Purver et al., 2010]

Hough, Purver, Eshghi KCL 2011 4/24



Dynamic Syntax: an incremental formalism

Dynamic Syntax [Kempson et al., 2001]:
an incremental grammar framework
word-by-word monotonic growth of semantic representation
grammaticality is constraints on construction process
bidirectional: generation in terms of parsing
one of its principles is underspecification and update, which
make it very good for ellipsis and anaphora resolution
recently been used to model split utterance/compound
contributions [Purver et al., 2010]

Split Turn Taking Puzzle

A: Did you . . .
B: Burn myself?

Hough, Purver, Eshghi KCL 2011 4/24



Dynamic Syntax: an action-based formalism

Words are represented as lexical actions which are
packages of tree update operations

Hough, Purver, Eshghi KCL 2011 5/24



Dynamic Syntax: an action-based formalism

Words are represented as lexical actions which are
packages of tree update operations

e.g. verbs introduce partial propositional templates:

Hough, Purver, Eshghi KCL 2011 5/24



Dynamic Syntax: an action-based formalism

Words are represented as lexical actions which are
packages of tree update operations

e.g. verbs introduce partial propositional templates:

like

IF ?Ty(e → t)
THEN make(〈↓1〉);go(〈↓〉);

put(Fo(Like′),
Ty(e → (e → t)))
go(〈↑1〉); make(〈↓0〉);
go(〈↓0〉); put(?Ty(e))

ELSE ABORT

?Ty(e → t)

?Ty(e)
♦

Ty(e → (e → t))
Like′

Hough, Purver, Eshghi KCL 2011 5/24



Dynamic Syntax: an action-based formalism

Words are represented as lexical actions which are
packages of tree update operations

e.g. verbs introduce partial propositional templates:

like

IF ?Ty(e → t)
THEN make(〈↓1〉);go(〈↓〉);

put(Fo(Like′),
Ty(e → (e → t)))
go(〈↑1〉); make(〈↓0〉);
go(〈↓0〉); put(?Ty(e))

ELSE ABORT

?Ty(e → t)

?Ty(e)
♦

Ty(e → (e → t))
Like′

Computational actions are general rules that can be fired
independently of lexical actions. They give DS predictivity

Hough, Purver, Eshghi KCL 2011 5/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary

?Ty(t),Tn(0), ♦

Hough, Purver, Eshghi KCL 2011 6/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary

?Ty(t),Tn(0)

♦, ?Ty(e)
?Ty(e → t)

Hough, Purver, Eshghi KCL 2011 6/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary
‘John

?Ty(t),Tn(0)

♦, ?Ty(e)
John′, Ty(e) ?Ty(e → t)

Hough, Purver, Eshghi KCL 2011 6/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary
‘John

?Ty(t),Tn(0)

Ty(e)
John′ ?Ty(e → t),♦

Hough, Purver, Eshghi KCL 2011 6/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary
‘John likes

?Ty(t),Tn(0)

Ty(e)
John′ ?Ty(e → t)

?Ty(e),♦
Like′

Hough, Purver, Eshghi KCL 2011 6/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary
‘John likes Mary’

?Ty(t),Tn(0)

Ty(e)
John′ ?Ty(e → t)

Ty(e),♦
Mary ′

Like′

Hough, Purver, Eshghi KCL 2011 6/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary
‘John likes Mary’

?Ty(t),Tn(0)

Ty(e)
John′

Like′(Mary ′)
?Ty(e → t),♦

Ty(e)
Mary ′

Like′

Hough, Purver, Eshghi KCL 2011 6/24



Building a tree incrementally: “John likes Mary”

Processing John likes Mary
‘John likes Mary’

Like′(Mary ′)(John′)
Ty(t),Tn(0), ♦

Ty(e)
John′

Like′(Mary ′)
Ty(e → t)

Ty(e)
Mary ′

Like′

Hough, Purver, Eshghi KCL 2011 6/24



Ambiguity of structure: “John, Mary likes”

?Ty(t),Tn(0),♦

Hough, Purver, Eshghi KCL 2011 7/24



Ambiguity of structure: “John, Mary likes”

e.g. ‘John

?Ty(t),Tn(0)

John′,

〈↑∗〉Tn(0)
?∃xTn(x)♦

Hough, Purver, Eshghi KCL 2011 7/24



Ambiguity of structure: “John, Mary likes”

e.g. ‘John

?Ty(t),Tn(0)

John′,

〈↑∗〉Tn(0)
?∃xTn(x)

?Ty(e)
♦

?Ty(e → t)

Hough, Purver, Eshghi KCL 2011 7/24



Ambiguity of structure: “John, Mary likes”

e.g. ‘John, Mary

?Ty(t),Tn(0)

John′,

〈↑∗〉Tn(0)
?∃xTn(x)

?Ty(e),Mary ′

♦,Ty(e)
?Ty(e → t)

Hough, Purver, Eshghi KCL 2011 7/24



Ambiguity of structure: “John, Mary likes”

e.g. ‘John, Mary

?Ty(t),Tn(0)

John′,

〈↑∗〉Tn(0)
?∃xTn(x)

Ty(e),Mary ′

?Ty(e → t),♦

Hough, Purver, Eshghi KCL 2011 7/24



Ambiguity of structure: “John, Mary likes”

e.g. ‘John, Mary likes’

?Ty(t),Tn(0)

John′,

〈↑∗〉Tn(0)
?∃xTn(x)

Ty(e),Mary ′

?Ty(e → t)

?Ty(e)
♦ Like′

Hough, Purver, Eshghi KCL 2011 7/24



Ambiguity of structure: “John, Mary likes”

e.g. ‘John, Mary likes’

?Ty(t),Tn(0)

John′,

〈↑∗〉Tn(0)
?∃xTn(x)

Ty(e),Mary ′

?Ty(e → t)

?Ty(e)
♦ Like′

Hough, Purver, Eshghi KCL 2011 7/24



Ambiguity of structure: “John, Mary likes”

e.g. ‘John, Mary likes’

?Ty(t),Tn(0)

Ty(e),Mary ′

?Ty(e → t),♦

Ty(e), John′

Like′

Hough, Purver, Eshghi KCL 2011 7/24



Dynamic Syntax parsing process in the DyLAN parser

For a word wi and the parser state at step i as a set of
partial trees Si :

Hough, Purver, Eshghi KCL 2011 8/24



Dynamic Syntax parsing process in the DyLAN parser

For a word wi and the parser state at step i as a set of
partial trees Si :

The parsing process

1 Apply all lexical actions ai corresponding to wi to each partial
tree in Si−1. For each application that succeeds, add the
resulting partial tree to Si

2 For each tree in Si , apply all possible sequences of
computational actions and add the result to Si

Hough, Purver, Eshghi KCL 2011 8/24



Dynamic Syntax parsing process in the DyLAN parser

For a word wi and the parser state at step i as a set of
partial trees Si :

The parsing process

1 Apply all lexical actions ai corresponding to wi to each partial
tree in Si−1. For each application that succeeds, add the
resulting partial tree to Si

2 For each tree in Si , apply all possible sequences of
computational actions and add the result to Si

DS parsing can also be seen as a tree lattice [Sato, 2010]
Nodes = trees
Edges = lexical/computational actions

Hough, Purver, Eshghi KCL 2011 8/24



DS DAG

Hough, Purver, Eshghi KCL 2011 9/24



DS DAG

AXIOM

Hough, Purver, Eshghi KCL 2011 9/24



DS DAG

AXIOM

T2
*adjunct

T1
intro

axiom

T11
predict

Hough, Purver, Eshghi KCL 2011 10/24



DS DAG

“John”

AXIOM

T2

*adjunct

T1
intro

axiom

T11 T111
LEX=’john’

T111111

T21LEX=’john’ T2111

T211211

T213

predict
T1111 T11111

complete anticipthin

thin

T211
thin complete

T2112

complete

T21121
intro predict

T3
LEX=’john’

Hough, Purver, Eshghi KCL 2011 11/24



DS DAG

“John” “Mary”

AXIOM

T2

*adjunct

T1
intro

axiom

T11 T111
LEX=’john’

T111111 T1111111
LEX=’mary’

T21LEX=’john’ T2111 T21111
LEX=’mary’

T211211 T2112111
LEX=’mary’

T213 T2131
LEX=’mary’

predict
T1111

T11111
complete

anticip
thin

thin

T211
thin complete

T2112

complete

T21121
intro predict

T3
LEX=’john’

Hough, Purver, Eshghi KCL 2011 12/24



Context in terms of a DS DAG parse state

Hough, Purver, Eshghi KCL 2011 13/24



Context in terms of a DS DAG parse state

Syntactic context can be seen as the path back to the root
node (axiom)

Hough, Purver, Eshghi KCL 2011 13/24



Context in terms of a DS DAG parse state

Syntactic context can be seen as the path back to the root
node (axiom)

Following this path will give you trees, words and actions

Hough, Purver, Eshghi KCL 2011 13/24



Context in terms of a DS DAG parse state

Syntactic context can be seen as the path back to the root
node (axiom)

Following this path will give you trees, words and actions
Going back in context and “re-running” these actions can
allow the parsing of ellipsis

“John likes Mary. Bill does too”

Hough, Purver, Eshghi KCL 2011 13/24



Context in terms of a DS DAG parse state

Syntactic context can be seen as the path back to the root
node (axiom)

Following this path will give you trees, words and actions
Going back in context and “re-running” these actions can
allow the parsing of ellipsis

“John likes Mary. Bill does too”

Underspecified semantic placeholders can be integrated
through backtracking triggers like do-auxilliaries and
pronouns

Hough, Purver, Eshghi KCL 2011 13/24



TTR and DS

Hough, Purver, Eshghi KCL 2011 14/24



TTR and DS

Recent work integrating DS with Type Theory with Records
(TTR) [Cooper, 2005]

[

x : john
p : leave(x)

]

[

x : john
]

λ
[

x : e
]

.

[

x : e
p : leave(x)

]

Hough, Purver, Eshghi KCL 2011 14/24



TTR and DS

Recent work integrating DS with Type Theory with Records
(TTR) [Cooper, 2005]

[

x : john
p : leave(x)

]

[

x : john
]

λ
[

x : e
]

.

[

x : e
p : leave(x)

]

TTR record types provide the semantic content of each
node of the DS trees

Hough, Purver, Eshghi KCL 2011 14/24



TTR and DS

Recent work integrating DS with Type Theory with Records
(TTR) [Cooper, 2005]

[

x : john
p : leave(x)

]

[

x : john
]

λ
[

x : e
]

.

[

x : e
p : leave(x)

]

TTR record types provide the semantic content of each
node of the DS trees

LINKed trees for adjunction are easily incorporated by
extending record types

Hough, Purver, Eshghi KCL 2011 14/24



TTR and DS

Recent work integrating DS with Type Theory with Records
(TTR) [Cooper, 2005]

[

x : john
p : leave(x)

]

[

x : john
]

λ
[

x : e
]

.

[

x : e
p : leave(x)

]

TTR record types provide the semantic content of each
node of the DS trees

LINKed trees for adjunction are easily incorporated by
extending record types

Recently, a Davidsonian [Davidson, 1980] event-based
semantics for tense has been incorporated [Cann, 2010]

Hough, Purver, Eshghi KCL 2011 14/24



Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

Hough, Purver, Eshghi KCL 2011 15/24



Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

I want to go . . .













e = now : es

e1 = future : es

x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t













Trip :

Hough, Purver, Eshghi KCL 2011 15/24



Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

I want to go to Paris
. . .





















e = now : es

e1 = future : es

x1 = Paris : e
p2 = to(e1, x1) : t
x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t





















Trip :
to = paris

Hough, Purver, Eshghi KCL 2011 15/24



Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

I want to go to Paris
from London . . .





























e = now : es

e1 = future : es

x1 = Paris : e
p2 = to(e1, x1) : t
x2 = London : e
p3 = from(e1, x2) : t
x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t





























Trip :
to = paris
from = london

Hough, Purver, Eshghi KCL 2011 15/24



Incremental Semantic Construction with TTR

Using TTR we can get incrementally constructed record
types from our trees:

I want to go to Paris
from London . . .





























e = now : es

e1 = future : es

x1 = Paris : e
p2 = to(e1, x1) : t
x2 = London : e
p3 = from(e1, x2) : t
x = speaker : e
p1 = go(e1, x) : t
p = want(e, x , p1) : t





























Trip :
to = paris
from = london

Provides a nice interface between Dynamic Syntax ↔
domain semantic frames

Hough, Purver, Eshghi KCL 2011 15/24



Jindigo: An incremental dialogue system

[Schlangen and Skantze, 2009] have introduced Jindigo, a
flexible incremental dialogue system framework

Hough, Purver, Eshghi KCL 2011 16/24



Jindigo: An incremental dialogue system

[Schlangen and Skantze, 2009] have introduced Jindigo, a
flexible incremental dialogue system framework

Modular, with incremental units being passed from one to
another, notion of commitment

Hough, Purver, Eshghi KCL 2011 16/24



Jindigo: An incremental dialogue system

[Schlangen and Skantze, 2009] have introduced Jindigo, a
flexible incremental dialogue system framework

Modular, with incremental units being passed from one to
another, notion of commitment

Parsing, generation and dialogue management being
currently worked on [Buß et al., 2010,
Schlangen et al., 2010, Skantze and Hjalmarsson, 2010]

Hough, Purver, Eshghi KCL 2011 16/24



Jindigo: An incremental dialogue system

[Schlangen and Skantze, 2009] have introduced Jindigo, a
flexible incremental dialogue system framework

Modular, with incremental units being passed from one to
another, notion of commitment

Parsing, generation and dialogue management being
currently worked on [Buß et al., 2010,
Schlangen et al., 2010, Skantze and Hjalmarsson, 2010]

Incremental speech recognition:

SA S1
i

S2
want

Hough, Purver, Eshghi KCL 2011 16/24



Jindigo: An incremental dialogue system

[Schlangen and Skantze, 2009] have introduced Jindigo, a
flexible incremental dialogue system framework

Modular, with incremental units being passed from one to
another, notion of commitment

Parsing, generation and dialogue management being
currently worked on [Buß et al., 2010,
Schlangen et al., 2010, Skantze and Hjalmarsson, 2010]

Incremental speech recognition:

SA S1
i

S2
want

S3a SB
ticket

S3′to S4′

take
it

Hough, Purver, Eshghi KCL 2011 16/24



Jindigo: An incremental dialogue system

[Schlangen and Skantze, 2009] have introduced Jindigo, a
flexible incremental dialogue system framework

Modular, with incremental units being passed from one to
another, notion of commitment

Parsing, generation and dialogue management being
currently worked on [Buß et al., 2010,
Schlangen et al., 2010, Skantze and Hjalmarsson, 2010]

Incremental speech recognition:

SA S1
i

S2
want

S3a SB
ticket

S3′to S4′

take
it

A DS DAG could interface with this?. . .

Hough, Purver, Eshghi KCL 2011 16/24



Jindigo: incoporating incremental semantics

With purely phonological accounts of incremental input
processing, mid-utterance backchannels, unfinished
utterances become possible in micro domains

Hough, Purver, Eshghi KCL 2011 17/24



Jindigo: incoporating incremental semantics

With purely phonological accounts of incremental input
processing, mid-utterance backchannels, unfinished
utterances become possible in micro domains
But utterance meaning treated non-incrementally:

A standard dialogue systems approach of one move per
utterance, fragment resolution mechanisms
Not much in the way of semantics

Hough, Purver, Eshghi KCL 2011 17/24



Jindigo: incoporating incremental semantics

With purely phonological accounts of incremental input
processing, mid-utterance backchannels, unfinished
utterances become possible in micro domains
But utterance meaning treated non-incrementally:

A standard dialogue systems approach of one move per
utterance, fragment resolution mechanisms
Not much in the way of semantics

A domain-general incremental semantics is needed for
various dialogue phenomena

Hough, Purver, Eshghi KCL 2011 17/24



Putting voice recognition and DS parsing together

DS ↔ ASR in Jindigo
Incremental word lattice subsumes finer grained
incremental parse lattice

“Big” word hypothesis edges from the ASR subsume the
“thin” lexical/computational action edges from parsing

Hough, Purver, Eshghi KCL 2011 18/24



Putting voice recognition and DS parsing together

DS ↔ ASR in Jindigo
Incremental word lattice subsumes finer grained
incremental parse lattice

“Big” word hypothesis edges from the ASR subsume the
“thin” lexical/computational action edges from parsing

SA

S1
intro

S2

pred
SB

“john”

S1′ S2′

“john”
S3′

intro
S4′

pred
SB′

Hough, Purver, Eshghi KCL 2011 18/24



Putting voice recognition and DS parsing together

DS ↔ ASR in Jindigo
Incremental word lattice subsumes finer grained
incremental parse lattice

“Big” word hypothesis edges from the ASR subsume the
“thin” lexical/computational action edges from parsing

SA

S1
intro

S2

pred
SB

“john”

S1′ S2′

“john”
S3′

intro
S4′

pred
SB′

StA StB

“john”

Hough, Purver, Eshghi KCL 2011 18/24



Putting voice recognition and DS parsing together

DS ↔ ASR in Jindigo
Incremental word lattice subsumes finer grained
incremental parse lattice

“Big” word hypothesis edges from the ASR subsume the
“thin” lexical/computational action edges from parsing

SA

S1
intro

S2

pred
SB

“john”

S1′ S2′

“john”
S3′

intro
S4′

pred
SB′

StA StB

“john”

The best parse hypothesis will be committed when it is
grounded in a committed ASR hypothesis

Hough, Purver, Eshghi KCL 2011 18/24



DS and TTR for domain concepts in Jindigo

Hough, Purver, Eshghi KCL 2011 19/24



DS and TTR for domain concepts in Jindigo

Currently complete DS trees have TTR representations

Hough, Purver, Eshghi KCL 2011 19/24



DS and TTR for domain concepts in Jindigo

Currently complete DS trees have TTR representations

Work on making the TTR representation completely
incremental has begun

Hough, Purver, Eshghi KCL 2011 19/24



DS and TTR for domain concepts in Jindigo

Currently complete DS trees have TTR representations

Work on making the TTR representation completely
incremental has begun

These TTR representations are matched to domain
concept frames(e.g. Trip(to:City[Paris])). Another
level of semantic incrementality

Hough, Purver, Eshghi KCL 2011 19/24



DS and TTR for domain concepts in Jindigo

Currently complete DS trees have TTR representations

Work on making the TTR representation completely
incremental has begun

These TTR representations are matched to domain
concept frames(e.g. Trip(to:City[Paris])). Another
level of semantic incrementality

When concept frames are matched successfully, they are
committed to the output buffer

Hough, Purver, Eshghi KCL 2011 19/24



DS and TTR for domain concepts in Jindigo

Currently complete DS trees have TTR representations

Work on making the TTR representation completely
incremental has begun

These TTR representations are matched to domain
concept frames(e.g. Trip(to:City[Paris])). Another
level of semantic incrementality

When concept frames are matched successfully, they are
committed to the output buffer

Extending the record types through LINK adjunction in DS
is straightforward

Hough, Purver, Eshghi KCL 2011 19/24



DS and TTR for domain concepts in Jindigo

Currently complete DS trees have TTR representations

Work on making the TTR representation completely
incremental has begun

These TTR representations are matched to domain
concept frames(e.g. Trip(to:City[Paris])). Another
level of semantic incrementality

When concept frames are matched successfully, they are
committed to the output buffer

Extending the record types through LINK adjunction in DS
is straightforward

The parse state is maintained, so new trees and new
record types can be introduced and replace a revoked
domain frame concept

Hough, Purver, Eshghi KCL 2011 19/24



Generation

Hough, Purver, Eshghi KCL 2011 20/24



Generation

Bidirectional quality of DS. Work is being done on
developing the system’s generation (NLG) module

recent incremental generation work is being done in terms
of speech plans [Skantze and Hjalmarsson, 2010]
not yet in terms of online syntactic/semantic construction
during generation

Hough, Purver, Eshghi KCL 2011 20/24



Generation

Bidirectional quality of DS. Work is being done on
developing the system’s generation (NLG) module

recent incremental generation work is being done in terms
of speech plans [Skantze and Hjalmarsson, 2010]
not yet in terms of online syntactic/semantic construction
during generation

The DS Generation process [Purver and Kempson, 2004]
uses the same action-based mechanism as parsing, but
with a goal tree

each parse state is checked and trees kept which subsume
the goal, successful lexical action = generated word
As the generator and parser can have access to the same
parse state lattice, split utterances/compound contributions
should follow straightforwardly according to the
[Purver et al., 2010] account

Hough, Purver, Eshghi KCL 2011 20/24



Generation

Bidirectional quality of DS. Work is being done on
developing the system’s generation (NLG) module

recent incremental generation work is being done in terms
of speech plans [Skantze and Hjalmarsson, 2010]
not yet in terms of online syntactic/semantic construction
during generation

The DS Generation process [Purver and Kempson, 2004]
uses the same action-based mechanism as parsing, but
with a goal tree

each parse state is checked and trees kept which subsume
the goal, successful lexical action = generated word
As the generator and parser can have access to the same
parse state lattice, split utterances/compound contributions
should follow straightforwardly according to the
[Purver et al., 2010] account

This is work in progress!

Hough, Purver, Eshghi KCL 2011 20/24



Module interaction: sharing tree lattices

Tree lattice “parse state” part of generation process, so can
be shared between modules. . .

Hough, Purver, Eshghi KCL 2011 21/24



Module interaction: sharing tree lattices

Tree lattice “parse state” part of generation process, so can
be shared between modules. . .

I want to go

Word
INTERPRETER

Parse State
Concept

 word lattice

to Paris?

Concept
Parse State

GENERATOR
Word

tree lattice

 word

 tree lattice

Hough, Purver, Eshghi KCL 2011 21/24



Jindigo demo

[Jindigo demo]

Hough, Purver, Eshghi KCL 2011 22/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such
this is for television

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such
this is for television it’s a

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such
this is for television it’s a

we have a

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such
this is for television it’s a

we have a market range of Interna...

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such
this is for television it’s a

we have a market range of Interna...
like it’s an International Market Range

Hough, Purver, Eshghi KCL 2011 23/24



Future work: repair simulation

Simulating error phenomena such as self-repair and
hesitation should be possible

And because this is such
this is for television it’s a

we have a market range of Interna...
like it’s an International Market Range

the incremental goal tree subsumption checking of the DS
generation process [Purver and Kempson, 2004]
repair strategy: if a new goal tree from a dialogue manager
does not subsume the current one, backtrack through the
context DAG until a tree is found where subsumption does
occur and then start generating again from there
error causes: possible information flow deadlocks between
jindigo modules

Hough, Purver, Eshghi KCL 2011 23/24



Thanks for listening!

Thanks to:

Ruth Kempson, Pat Healey, Christine Howes,

Graham White, Eleni Gregoromichelaki, Yo Sato

Hough, Purver, Eshghi KCL 2011 24/24



Buß, O., Baumann, T., and Schlangen, D. (2010).

Collaborating on utterances with a spoken dialogue system using an ISU-based approach to incremental
dialogue management.
In Proceedings of the SIGDIAL 2010 Conference, pages 233–236, Tokyo, Japan. Association for
Computational Linguistics.

Cann, R. (2010).

Towards an account of the english auxiliary system.
In Gregoromichelaki, E., Kempson, R., and Howes, C., editors, The Dynamics of Lexical Interfaces. CSLI.
to appear.

Cooper, R. (2005).

Records and record types in semantic theory.
Journal of Logic and Computation, 15(2):99–112.

Davidson, D. (1980).

Essays on Actions and Events.
Clarendon Press, Oxford, UK.

Kempson, R., Meyer-Viol, W., and Gabbay, D. (2001).

Dynamic Syntax: The Flow of Language Understanding.
Blackwell.

Purver, M., Gregoromichelaki, E., Meyer-Viol, W., and Cann, R. (2010).

Splitting the ‘I’s and crossing the ‘You’s: Context, speech acts and grammar.
In Łupkowski, P. and Purver, M., editors, Aspects of Semantics and Pragmatics of Dialogue. SemDial 2010,
14th Workshop on the Semantics and Pragmatics of Dialogue, pages 43–50, Poznań. Polish Society for
Cognitive Science.

Purver, M., Howes, C., Gregoromichelaki, E., and Healey, P. G. T. (2009).

Split utterances in dialogue: a corpus study.
In Proceedings of the 10th Annual SIGDIAL Meeting on Discourse and Dialogue (SIGDIAL 2009
Conference), pages 262–271, London, UK. Association for Computational Linguistics.

Purver, M. and Kempson, R. (2004).

Hough, Purver, Eshghi KCL 2011 24/24



Incremental context-based generation for dialogue.
In Belz, A., Evans, R., and Piwek, P., editors, Proceedings of the 3rd International Conference on Natural
Language Generation (INLG04), number 3123 in Lecture Notes in Artifical Intelligence, pages 151–160,
Brockenhurst, UK. Springer.

Sato, Y. (2010).

Local ambiguity, search strategies and parsing in Dynamic Syntax.
In Gregoromichelaki, E., Kempson, R., and Howes, C., editors, The Dynamics of Lexical Interfaces. CSLI.
to appear.

Schlangen, D., Baumann, T., Buschmeier, H., Buß, O., Kopp, S., Skantze, G., and Yaghoubzadeh, R. (2010).

Middleware for incremental processing in conversational agents.
In Proceedings of the SIGDIAL 2010 Conference, pages 51–54, Tokyo, Japan. Association for Computational
Linguistics.

Schlangen, D. and Skantze, G. (2009).

A general, abstract model of incremental dialogue processing.
In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 710–718,
Athens, Greece. Association for Computational Linguistics.

Skantze, G. and Hjalmarsson, A. (2010).

Towards incremental speech generation in dialogue systems.
In Proceedings of the SIGDIAL 2010 Conference, pages 1–8, Tokyo, Japan. Association for Computational
Linguistics.

Hough, Purver, Eshghi KCL 2011 24/24


