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Abstract

We propose a novel Types-As-Classifiers
approach to dialogue processing for robots
using probabilistic type judgments. In our
proposal, incoming sensory data is con-
verted to a world belief record in real time,
and then derived beliefs such as intention
attribution to a user, or the prediction of
affordances of visible objects, are made
as record type judgements of that record.
The record can be updated dynamically
like a dialogue state, allowing information
of different perceptual sources to be easily
combined in real time.

1 Introduction

The combination of computer vision and natu-
ral language processing is now incredibly popu-
lar. Thanks to increased computing power and
the development of new deep learning techniques,
huge strides forward have been made in several
tasks, including: automatic image retrieval from
key words, reference resolution of objects in pho-
tographs from text (Kennington and Schlangen,
2015), generating referring expressions to objects
given probabilistic estimation of object properties
(Mast et al., 2016), caption generation and visual
question answering (Antol et al., 2015).

A more challenging task, beyond the use of sin-
gle sentence texts with images, is the creation of
dialogue systems designed for real-world human-
robot interaction (HRI) which combines proba-
bilistic information encoding visual and physical
properties of objects and information about the in-
teraction more commonly encoded in a dialogue
state. This uniform approach not only requires the
use of complex visual information and semantic
parsing, but needs to permit fluid interaction with a
collaborative robot to help a user complete a man-

ual task. This requires an incrementally and dy-
namically evolving dialogue state which encodes
the robot’s own action state as well as its estima-
tion of the user’s intentions in real time.

In this paper we address this challenge by for-
mulating a simple interaction state for a robot
using concepts from Type Theory with Records
(TTR) (Cooper, 2005). We characterize the
robot’s world belief as a constantly updating
record, and use type classifiers of different kinds
which operate on the state record to make type
judgements on the world belief. Once a judge-
ment is made and used (committed), this can be
added to the world belief for further classifica-
tion and update. For the classification we use
a combination of lattice theory and probabilistic
TTR (Cooper et al., 2014). Inspired by the re-
cent work using TTR for perceptual classification
(Dobnik et al., 2012; Yu et al., 2016) and the sim-
ple Words-As-Classifiers (WAC) model (Kenning-
ton and Schlangen, 2015) to reference resolution
of objects in real-world scenes, here we propose a
general Types-As-Classifiers (TAC) approach.

2 Types-As-Classifiers for human-robot
interaction

Typical raw perceptual information for a collab-
orative pick-and-place robot may be as in Fig. 1.
The left side shows a camera feed, and computer
vision based segmentation and tracking of objects
as described in (Uckermann et al., 2014a,b), and
perceptual classifiers, such as that for ‘yellow’,
which classify the degree to which an object has
that perceptual property. The current words rec-
ognized by the robot’s speech recognizer (ASR)
are also added to the state as they arrive. On the
right side, the diagram shows how the robot tracks
its own current task state and action state of its arm
through a Hierarchical State Machine (HSM).
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yellow = 0.69
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USER SPEECH (current user utterance):
‘put the left green apple in the basket’
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Figure 1: A typical state according to the robot. Objects are segmented and properties can be obtained
for each object. The robot’s internal action state is controlled by a Hierarchical State Machine (HSM)

2.1 Encoding the robot’s sensory state as an
updating TTR record

In this paper we use TTR record types, and the in-
habitants of record types, records, as our primary
formal apparatus — see Cooper (2005) for details.
We characterize the state as a world belief record-
for an in-robot control system for our purposes it
will be of the format in (1).!
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For HSMs as in Fig. 1, we can formulate the
state at a given time as a record via the use of
recursive structure. The record gets constructed
from the highest level down, whereby each paral-
lel/concurrent state, such as the task and arm sub-
states of robot in Fig. 1, are encoded as separate
fields in the record. If the current state is an em-

IThis is an example record where many of the labels and

values are just represented by ‘...” to indicate at least one such
field would be present in the full representation.

bedded substate, for example the emptyHand and
holdsObject substates within the idle substate of
the arm state in Fig. 1, that will be encoded in the
record structure as an embedded record (a record
within a record). When a state is atomic, that will
be encoded as a single value in the record.

Given this recursive formulation, the robot’s
current action and task state as shown by the dark-
ened areas in Fig. 1 can be formulated as in (2).
This is an efficient way of encoding the state, as
not all the inactive substates need be encoded.

bot — task = [ idle = curious ]
TOPOL =1 arm = [ idle = emptyHand ]
@)

3 Record Type classifiers applied to the
world belief for higher-level perception

The driving incremental interpretation process of
the system is a probabilistic classification of the
current world belief record wb (with the structure
in (1)) as being of a given situation record type ¢
within a set of possible record types I, conditioned
by current evidence record type e.

In the following sub-sections we outline differ-
ent perceptual classifiers which operate on wb to
get the probability judgement that wb is of a given
type. This can be done recursively, as once a type
judgement is made (for a given purpose), this can
be added to wb, and then further judgements of its
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Figure 2: A user intention record type to effect the movement of an object.

type can be made and added to it. While we sug-
gest a pipeline here by presentation order, we are
not committed to a specific classification ordering
or algorithm for inter-leaving these processes, and
leave investigation into this for future work. How-
ever, we are committed to the distribution over
possible record type judgements being stored in a
record type lattice— see (Hough and Purver, 2017).

3.1 Perceptual classification 1: predicting
object affordances

The robot’s perception of object properties is vi-
tal for complex interaction with the human user.
Specifically, the perception of object affordances
(Gibson, 1979), i.e. the possible actions associ-
ated to the objects (e.g. graspable), is crucial for
the robot to be able to manipulate them (Jamone
et al., 2016). Recently, probabilistic computa-
tional models of affordance perception have been
proposed, using Bayesian Networks (Gongalves
et al., 2014) and variational auto-encoders (De-
hban et al., 2016)- these can be used obtain the
probability of an object having different affor-
dances from visual and linguistic features. In our
model, affordance prediction is part of the proba-
bilistic type judgement of wb, such that the prob-
abilities of each object having each affordance
property are part of the available type judgements.
In future work, we will investigate how affordance
prediction can best integrate with natural language
processing decisions — e.g. (Salvi et al., 2012).

3.2 Perceptual classification 2: parsing

The next higher-level perception classification is
the incremental semantic parsing of the recog-
nized words from the ASR. For this we use the
Dylan (‘DYnamics of LANguage’) parser (Purver
et al., 2011).2 The parser fulfills the criteria
for incremental semantic construction outlined in
(Hough et al., 2015): it consumes words one-by-
one and outputs a maximal semantic record type
(RT) based on a pre-defined Dynamic Syntax-TTR
(DS-TTR) grammar- see (Eshghi et al., 2011) for

ZAvailable open-source at https://bitbucket.
org/dylandialoguesystem/dsttr.

full details. A typical parse for ‘put the red apple
in the big basket’ is as in (3):
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The best parse is added to the

human.c—utt.parse field. Now other infer-
ence can be done using this information, primarily
recognizing the user’s intention word-by-word.

3.3 Perceptual classification 3: user intention
recognition

As DyLan’s DS-TTR parser provides RTs word-
by-word incrementally, the user’s intention can
also be estimated word-by-word as wb is up-
dated. Given a set of possible user intention
record types I, where a typical intention may
look like 7 in Fig. 2, and the conditioning evi-
dence e, a record type representing a sub-part of
wb, we characterize a standard Maximum Likeli-
hood multi-class probabilistic classifier to estimate
the best prediction for the human.intention field
and its probability (or confidence) in its prediction
Ev(human.intention) by the standard arg max

and max functions in (4) and (5), respectively.
human.intention = arg rrllaxp(wb ctlwb:e) (4)

1€

Ev(human.intention) = r?ea;(p(wb s ijwd : e) ®)

In our current implementation, e simply con-
sists in judgements on the human.c—utt.parse
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Figure 3: Syntactic ambiguity causing the system changing its top hypothesis about the user’s intention.

and objects fields of wb, but it can be more than
these, and in future, we plan to learn which parts
are relevant for estimating user intentions.

In our current implementation, to calculate the
conditional likelihood p(wb : i|wb : e) for two
given RTs ¢ and e, we create a directed graph of the
current parse RT based on its field dependencies,
beginning from the head event field e_ pyy (which
determines the action), and recursively traverse all
fields which depend on it, applying the relevant
type classifiers. We match the field values in the
embedded entity restrictor RTs such as red(x) to
the low-level classifier results in objects. If the
relevant type judgement (e.g. red(x)) appears in
the parse, the corresponding low-level classifica-
tion strength for each object (e.g. obj_l.red =
0.8) will be used, using the product rule to multi-
ply the probability of the relevant fields for a given
object. The overall likelihood of wb : i is calcu-
lated recursively, beginning with the likelihood of
the embedded RTs such as intention.goal and the
target objects intention.objects. The likelihood
of the judgements of each of the embedded fields
is multiplied together to get the overall probability
of the intention.

3.4 Perceptual classification 4: estimating
legibility of robot intentions

Dual to confidence about the user’s intention, we
can also estimate the legibility of the robot’s in-
tention (Dragan et al., 2013), which is similar in
structure to the human intention in Fig. 2. Legi-
bility is important for estimating when the robot’s
intention has become distinct enough from other
possible intentions, and consequently what can
be considered grounded with the user through
the robot’s action so far (Hough and Schlangen,
2017). We estimate the strength-of-evidence func-
tion Ev(robot.intention) as in (6) where e is

taken to be all of wb excluding robot.intention:

Ev(robot.intention) = p(wb : robot.intention|wd : e)
(0)
(6) is the likelihood that the robot’s current in-
tention will be recognized by the user as such. In
practice, this legibility measure can be estimated
via a number of physics-based methods such as the
proximity of the arm to the target object compared
to the other objects, or through using movement
trajectories— see (Dragan et al., 2013).

4 Conclusion

We have given an overview of a Types-As-
Classifiers (TAC) approach to dialogue process-
ing in human-robot interaction. We believe our
approach is complementary to the Words-As-
Classifiers (WAC) approach to reference resolu-
tion (Kennington and Schlangen, 2015), and we
believe it brings several advantages. Firstly, it
is not constrained by individual word classifiers
alone, but can use the structure from a parser to
compute likelihood of complex intentions, all the
while maintaining word-by-word incrementality.
Secondly, it gives a uniform way to process differ-
ent multimodal information such as robotic task
and action states and visual and physical proper-
ties of objects within a dialogue state. In future,
we intend to show how it allows the different pro-
cesses to help each other- e.g. the online resolution
of parsing ambiguity such as that in Fig. 3, where
the first ‘in’ is taken not to modify ‘the apple’, but
this decision is changed once the user continues
talking. We are also planning to test our current
implementation with users.

Acknowledgments

We thank the reviewers for their useful comments.
This work was supported by the DFG Center of
Excellence EXC 277, the DFG Transregional Re-
search Centre CML, TRR-169.



References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425-2433.

Robin Cooper. 2005. Records and record types in se-
mantic theory. Journal of Logic and Computation,
15(2).

Robin Cooper, Simon Dobnik, Shalom Lappin, and
Staffan Larsson. 2014. A probabilistic rich type the-
ory for semantic interpretation. In Proceedings of
the EACL Workshop on Type Theory and Natural
Language Semantics (TTNLS), Gothenburg, Swe-
den. ACL.

Atabak Dehban, Lorenzo Jamone, Adam R Kampff,
and José Santos-Victor. 2016. Denoising auto-
encoders for learning of objects and tools affor-
dances in continuous space. In Robotics and Au-
tomation (ICRA), 2016 IEEE International Confer-
ence on, pages 4866—4871. IEEE.

Simon Dobnik, Robin Cooper, and Staffan Larsson.
2012. Modelling language, action, and perception
in type theory with records. In International Work-
shop on Constraint Solving and Language Process-
ing, pages 70-91. Springer.

Anca D Dragan, Kenton CT Lee, and Siddhartha S
Srinivasa. 2013. Legibility and predictability of
robot motion. In 2013 8th ACM/IEEE Inter-
national Conference on Human-Robot Interaction

(HRI), pages 301-308. IEEE.

Arash Eshghi, Matthew Purver, and Julian Hough.
2011. DyLan: Parser for Dynamic Syntax. Tech-
nical Report EECSRR-11-05, School of Electronic
Engineering and Computer Science, Queen Mary
University of London. ISSN 2043-0167. Available
from http://sf.net/projects/dylan/
files/dylan/DSImp_TechReport.pdf.

James J Gibson. 1979. The theory of affordances. The
people, place, and space reader, pages 56—60.

Afonso Gongalves, Jodo Abrantes, Giovanni Saponaro,
Lorenzo Jamone, and Alexandre Bernardino. 2014.
Learning intermediate object affordances: Towards
the development of a tool concept. In Joint IEEE
International Conferences on Development and
Learning and Epigenetic Robotics (ICDL-Epirob),
2014, pages 482—-488. IEEE.

Julian Hough, Casey Kennington, David Schlangen,
and Jonathan Ginzburg. 2015. Incremental seman-
tics for dialogue processing: Requirements, and a
comparison of two approaches. In Proceedings of
the 11th International Conference on Computational
Semantics, pages 206-216.

Julian Hough and Matthew Purver. 2017. Probabilis-
tic record type lattices for incremental reference pro-
cessing. In Modern perspectives in type-theoretical
semantics, pages 189-222. Springer.

Julian Hough and David Schlangen. 2017. It’s Not
What You Do, It’s How You Do It: Grounding Un-
certainty for a Simple Robot. In Proceedings of
the 2017 Conference on Human-Robot Interaction
(HRI2017).

Lorenzo Jamone, Emre Ugur, Angelo Cangelosi, Lu-
ciano Fadiga, Alexandre Bernardino, Justus Piater,
and José Santos-Victor. 2016. Affordances in psy-
chology, neuroscience and robotics: a survey. IEEE
Transactions on Cognitive and Developmental Sys-
tems.

Casey Kennington and David Schlangen. 2015. Simple
learning and compositional application of perceptu-
ally grounded word meanings for incremental ref-
erence resolution. Proceedings of the Conference
for the Association for Computational Linguistics
(ACL). ACL.

Vivien Mast, Zoe Falomir, and Diedrich Wolter. 2016.
Probabilistic reference and grounding with pragr for
dialogues with robots. Journal of Experimental &
Theoretical Artificial Intelligence, 28(5):889-911.

Matthew Purver, Arash Eshghi, and Julian Hough.
2011. Incremental semantic construction in a dia-
logue system. In Proceedings of the 9th IWCS, Ox-
ford, UK.

G. Salvi, L. Montesano, A. Bernardino, and J. Santos-
Victor. 2012. Language bootstrapping: Learning
word meanings from perception-action association.
IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics), 42(3):660-671.

Andre Uckermann, Christof Eibrechter, Robert
Haschke, and Helge Ritter. 2014a.  Real-time
hierarchical scene segmentation and classification.
In Humanoid Robots (Humanoids), 2014 14th
IEEE-RAS International Conference on, pages
225-231. IEEE.

Andr Uckermann, Christof Elbrechter, Robert
Haschke, and Helge Ritter. 2014b. Hierarchical
Scene Segmentation and Classification.

Yanchao Yu, Arash Eshghi, and Oliver Lemon. 2016.
Training an adaptive dialogue policy for interactive
learning of visually grounded word meanings. In
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, page 339.


http://sf.net/projects/dylan/files/dylan/DSImp_TechReport.pdf
http://sf.net/projects/dylan/files/dylan/DSImp_TechReport.pdf

