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1 Introduction

This chapter1 addresses the issue of incorporating probabilistic type-theoretic infer-

ence into an incremental dialogue framework, using processing of referring expres-

sions (that is, their interpretation and generation) as a test case. Within our framework,

we model reference processing in a psycholinguistically plausible way– that is, in a

strictly left-to-right, word-by-word, incremental fashion. We additionally show how

the model is capable of processing disfluent referring expressions while making use of

the information the disfluency conveys to reflect psycholinguistic results on the effect

on processing speed.

Our model incorporates probabilistic Type Theory with Records (Cooper et al.,

2014) and order-theoretic models of probability and information theory (Knuth, 2005)

into a formal dialogue system that reflects the psycholinguistic evidence.

In Section 2 we introduce the challenge of modelling reference processing, and

overview some previous approaches. In Section 3 we describe the semantic and dia-

logue framework we use and how we enrich it with probabilistic record type lattices. In

Section 4 we describe how our model can simulate psycholinguistic results in reference

processing and we finish with a discussion and conclusion.

2 Background on reference processing models

There has been significant work on simple referential communication games in psy-

cholinguistics and computational and formal models of communication. These refer-

ence games are usually posed as a human-human situation where an instruction giver

and instruction follower have access to the same visual scene with simple objects, and

the instructor produces an utterance to make the instructee select the object(s) he or

she refers to. A typical referring expression (RE) produced by an instruction giver in

a simple domain of coloured shapes would be “the yellow square”– these simple noun

phrases are the ones we focus on here.

From a speech production perspective, Levelt (1989)’s seminal work modelled

speaker strategies for producing REs in such a simple object naming game. He showed

∗This is a pre-print of an article published in S. Chatzikyriakidis and Z. Luo (eds.),

Modern Perspectives in Type-Theoretical Semantics, Studies in Linguistics and Philosophy 98

(Springer International Publishing AG). The final authenticated version is available online at:

https://doi.org/10.1007/978-3-319-50422-3_8
1Much of the work here is drawn from Hough and Purver (2014b) and Hough and Purver (2014a).
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how the production process could be split into three separate stages of conceptualiza-

tion (choosing the elements or properties of the objects the speaker intends to vocal-

ize), syntactic formulation (choosing the lexical items to convey the content, linearis-

ing their order and checking lexical agreements) and articulation (speaking). He also

showed how speakers use informationally redundant features of the target object, or

over-specification, violating Grice’s Maxim of Quantity that speakers should say no

more than is necessary to convey their communicative intention (Grice, 1975), a result

that has been supported in subsequent accounts.

In the natural language generation (NLG) community, referring expression gen-

eration (REG) has been widely studied (see (Krahmer and Van Deemter, 2012) for a

comprehensive survey). The incremental algorithm (IA) (Dale and Reiter, 1995), the

most well-known REG algorithm, is an iterative feature selection procedure that op-

erates on logical properties of objects in a visual scene (such as colour=yellow for

yellow objects). The IA computes the distractor set of referents (i.e. those not in-

tended for selection) which each property used in a RE could cause to be inferred.

From this, the IA gives a utility value to each property based on its ability to determine

the referent in a non-greedy manner– it iterates over the properties in terms of a fixed

preference order (whereby say, colour properties would ranked as preferred over shape

properties, and would therefore be used first), not just their ability to determine the

referent uniquely, and adds them if they reduce the number of distractors. The IA stops

when the combination of properties determines the referent unambiguously. This was

designed to be consistent with over-specification phenomena in that certain types of

properties will be selected if they have any discrimination ability, even if the final RE

generated is not optimally brief. More recently Frank and Goodman (2012) investigate

property preference and discriminatory power empirically in a Bayesian model of REG

based on information-theoretic surprisal in terms of how much REs reduce uncertainty

about their intended referent, a measure which they claim correlates strongly to human

judgements of which RE best describes a given target (carried out in a multiple choice

study rather than allowing open answers).

2.1 Incrementality

The aspect of reference processing we focus on here is incremental processing. That

is to say, as opposed to modelling the selection of linguistic content in REG and the

interpretation of REs on the level of complete utterances, we wish to model the in-

ference listeners make on a strictly left-to-right, word-by-word basis. We assume the

requirements of incremental semantics are to yield the maximal information from an

utterance as it is processed (Hough et al., 2015).

Existing models closest to our own are the incremental REG models described by

Guhe (2007) and Fernández (2013) and the incremental reference resolution model

proposed by Kennington and Schlangen (2014). Guhe (2007)’s approach to REG is to

model a fine-grained incremental conceptualizer which passes conceptual increments

(partial logical forms) to an incremental syntactic formulator, allowing piece-meal pro-

cessing. While not focussing on reference processing, the incremental conceptualiza-

tion is a point of departure we use in our model below.

Fernández (2013), on the other hand, takes a more purely linguistic, syntax-level

perspective. Fernández sketches a novel solution to modelling over-specification, ar-

guing the phenomenon may be caused more by the affordances of incremental left-to-

right word-by-word information processing in different languages, rather than salience
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of properties as proposed by Dale and Reiter (1995)’s IA.2 She argues properties seem-

ingly redundant when considering the RE as a whole unit may in fact be important

when considering their incremental word-by-word contribution to reference resolu-

tion, that is, their incremental informativity. The paper gives cross-linguistic evidence

from Spanish speakers based on Rubio-Fernández (2011)’s experimental results, argu-

ing over-generation of redundant adjectives is less common in languages where such

adjectives can be added post-nominally.. She exemplifies a domain where the only

red lamp in a scene is the referent, and it is possible to individuate it from its object

type (i.e. the property that it is a lamp) alone, where describing its colour is redun-

dant, however still partially discriminative as there is another red object in the domain.

For an English speaker “the red lamp” would be a typical over-specified description,

whereas in Spanish “la lámpara roja” (“the red lamp”) would be less common, and “la

lámpara” would be a more common RE. This cross-linguistic difference is due to the

fact the post-nominal “roja” does not add any reference information incrementally after

“la lámpara”, which on its own has sufficient discriminatory power, while the English

“red”, although not uniquely determining the referent, narrows the reference set and so

is incrementally informative. Fernández uses this example to sketch a REG system that

uses a variant of Dale and Reiter (1995)’s IA for content selection interleaved with a

TAG-based syntactic formulator that is strictly left-to-right incremental in its tree con-

struction. She emphasizes the importance of tightly coupling the REG procedure with

an interpretation component of a dialogue system but does not give details of how this

could be done.

On the interpretation side of reference, reference resolution, Kennington and Schlangen

(2014)’s incremental system models the role of the hearer or instructee. The system

continuously incrementally outputs a distribution of possible referents conditioning on

the logical values of properties of the objects in the scene and the words used to re-

fer to those properties spoken by the instructor. The model forms part of situated

dialogue processing, as it continuously updates its referent distributions based on per-

ceptual data, and not necessarily just linguistic data. The conditional probabilities are

calculated using a generative model (of the speaker) and implemented using Markov

Logic networks. Kennington et al. (2014)’s development of the model uses incremen-

tal semantic representations built up word-by-word by an incremental rMRS (robust

Minimal Recursion Semantics) parser (Peldszus et al., 2012) as part of the property set

it conditions on, boosting results from using simple n-gram models.

Motivated by incremental approaches such as those just described, this chapter

presents an incremental dialogue-motivated account of reference identification which

models the speaker in terms of incremental NLG and the hearer in terms of incremental

interpretation of utterances in reference identification games.

In addition to modelling incremental processing of fluent utterances, the model

aims to reflect the evidence from Brennan and Schober (2001)’s evidence that self-

repair can speed up semantic processing (or at least reference identification) in such

games. An incorrect RE being partly vocalized and then repaired in the instructions in

conjunction with a filled pause interregnum “uh” (e.g. “the yell-, uh, purple square”)

yields quicker response times to select the correct object from the onset of the target

(“purple”) than in the case of the fluent instructions (“the purple square”), with no

significant effect on accuracy– we return to this example below.

2It is worth noting here that the IA deals with incrementality in property selection of the avoidance of

re-computation type, rather than word-by-word surface-level incrementality.
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R1 :





















l1 : T1

l2 : T2

l3 : T3(l1)





















R2 :

[

l1 : T1

l2 : T2′

]

R3 : []

S 1 =





















l1 = a

l2 = b

l3 = c





















S 2 =

[

l1 = a

l2 = b′

]

S 3 = []

Figure 1: Example TTR record types (top row) and records (bottom)

3 Incorporating probability into type judgements and

dialogue states

To meet the challenges outlined, we present a reversible reference processing model

(i.e. one that works both in interpretation and generation with minor parametric changes),

situated within the incremental dialogue framework DyLan (‘Dynamics of Language’,

Purver et al., 2011). While DyLan is capable of incremental semantic processing, we

would like a dialogue model to be able to reflect the uncertainty of reference as a

referring expression progresses and allow probabilistic reasoning about the reference

situation in general, which is an uncontroversial view for modern cognitive models

(Chater et al., 2006). For this to become possible, the model should generate distribu-

tions over type judgements over a reference situation rather than just allow binary type

judgements. In the following subsections we explain the probabilistic type theoretic

and lattice theoretic mathematical tools we use to achieve incremental probabilistic

type judgements in DyLan.

3.1 Probabilistic TTR

Firstly, we briefly describe the chosen semantic representation framework for our model,

Type Theory with Records (TTR, Cooper, 2005, 2012).3

In TTR, the principal logical form of interest is the record type (abbreviated ‘RT’

largely from here), consisting of sets of fields of the form [ l : T ] containing a label l,

from a set of labels, and a type T , from a type ordering, representing the central type-

theoretic judgement l : T , that an object labelled l is of type T . RTs can be witnessed

(i.e. judged as inhabited) by records of that type, where a record is a semantic object

structured isomorphically to a RT, consisting of sets of label-value pairs [ l = v ]. See

Figure 1 for examples of RTs and records.

The central type judgement in TTR that a record s is of record type R, i.e. s : R,

can be made from the component type judgements of individual fields of R, e.g. the

one-field record [ l = v ] is of record type [ l : T ′ ] just in case type v is of type T ′. This

single-field RT check is generalisable to records and RTs with multiple fields: a record

s is of RT R if s includes fields with labels matching those in the fields of R in a one-to-

one relation, such that all fields in R are matched to a field in s, and all label-matched

3We only introduce the elements of TTR relevant to the phenomena discussed below. See Cooper (2012)

and Cooper (fcmg) (Chapter XXX, this volume) for a detailed formal description.
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fields in s have a value of the same type as their corresponding field in R (or, their value

is a subtype of the corresponding type in R, see below). A record type check can be

defined as in (1). Thus it is possible for the record s to have more fields than RT R and

for s : R to still hold, but not vice-versa: s : R cannot hold if RT R has more fields than

the record s.

(1) Record type check:

For a record s and and record type R, s : R is true iff for every field [ l : T ] in R

there is a field [ l = v ] in s such that v : T .

Fields can have values representing predicate type (PType) judgements, such as

l3 : T3(l1) in Figure 1, and consequently fields can be dependent on fields preceding

them (i.e. represented graphically higher up) in the RT, e.g. in Figure 1, l1 is bound in

the PType judgement field l3, so l3 depends on l1.

Semantically, the boolean judgement of whether type judgements are true or false

is determined by a model, or type system (Cooper, 2012). A type system consists of

(i) a partially ordered set of types (type hierarchy), ordered by the subtype relation as

will be explained further below, of which the supremum is the type Type, (ii) a set of

labelled objects (type inhabitants) which is disjoint from the type hierarchy, and (iii) a

valuation function A(T ) which maps each type T in the type hierarchy to a subset of the

set of type inhabitants. Therefore, in terms of judgements, l : T ′ is true iff the object

labelled l in the type system is a member of the set A(T ′); i.e. l : T ′ iff l ∈ A(T ′). In

terms of record types and records, if the field l : T ′ in a RT is true according to the type

system, then the judgement in a record l = v is true iff v is of type T ′; i.e. given l : T ′

is true, then l = v is true iff v : T ′ (where v : T ′ is true iff v ∈ A(T ′) is true). In addition

to judgements that atomic objects are of a given type, and records are of a given record

type, it is possible to make judgements that a type is of another type inductively from

their position in a type hierarchy.

3.1.1 The subtype relation

In line with the semantic interpretation requirement of incremental interpretation and

NLG models yielding the maximal information from an utterance as it is processed

(Hough et al., 2015), a strongly incremental account will require checking whether

RTs under construction are consistent with the RTs representing domain concept RTs

provided by a conceptualizer incrementally. To do this we make use of the ⊑ (‘is a

subtype of’) relation, which is subsumptive in TTR, that is if RT R1 is a subtype of RT

R2 (i.e. R1 ⊑ R2) then there are no objects of type R1 that are not of type R2, or in the

sense of the phrase from Description Logic, R1 is subsumed by R2.

Operationally, subtype relation checking can be defined for RTs in terms of fields

as simply: R1 ⊑ R2 iff for all fields [ l : T2 ] in R2, R1 contains [ l : T1 ] where T1 ⊑ T2.

In Figure 1, it will be the case that R1 ⊑ R3, R2 ⊑ R3 and R1 ⊑ R2 iff T2 ⊑ T2′ .

The transitive nature of this relation (i.e. iff R1 ⊑ R2 and R2 ⊑ R3 then R1 ⊑ R3)

can be used effectively for type-theoretic inference as will be described below. An

operational definition for a subtype check, adapted from (Fernández, 2006, p.96), is

given in (2). If R1 has n fields and R2 has m fields, assuming naively a uniform cost for

each type check on the type hierarchy, the complexity of this check can be O(n ×m) in

the worst case where every field in one RT needs to be compared against every field in

the other.4 Note that the label-matching conventions for type checking are extremely

4The cost of the subtype check for a field may be more costly if it is dependent (i.e. a PType, however

this is not important for the discussion here.
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useful for computability here, as the complexity would be far greater if unconstrained

re-labelling was permitted.

(2) Subtype relation check:

For record types R1 and R2, R1 ⊑ R2 holds just in case for each field [ l : T2 ] in

R2 there is a field [ l : T1 ] in R1 such that T1 ⊑ T2. This relation is reflexive and

transitive.

While we do not discuss the full stratified type hierarchy for TTR here, we note that

for all types, T1 ⊑ T2 implies that T1 : T2, but does not imply T2 : T1 unless T2 ⊑ T1,

a consistency that extends to RT judgements. There are many complexities here which

we will not deal with as regards type stratification– again see Cooper (2012) for details.

We do not believe these complexities affect TTR’s suitability for dialogue modelling

and the discussion here.

We use the notion of manifest (singleton) types, e.g. Ta, the type T of which only

a is a witness. Here, we represent manifest RT fields such as [ l : Ta ] where Ta ⊑ T

by using the syntactic sugar [ l=a : T ] following Cooper (2012). The subtype relation

effectively allows progressive instantiation of fields in a monotonic fashion, as the addi-

tion of fields to an RT R, and the manifestation of fields in R, leads to R′ where R′ ⊑ R.

This is practically useful for an incremental dialogue system in terms of meeting the

strong incremental interpretation and minimization of re-computation requirements of

incremental semantics (Hough et al., 2015) and for other reasons of incremental utter-

ance processing as we will explain.

3.1.2 Meet types and the merge operation

We make use of the meet type of two or more RTs and an operation to yield an equiva-

lent RT to the meet type.5 As Cooper (2012) explains, the meet type of two RTs results

in a type that is no longer an RT, even if the objects it witnesses are records, however,

a RT extensionally equivalent to the meet type of two RTs R1 and R2 is the yield of

a merge operation R1 ⋗ R2 (Larsson, 2010). Operationally, in the simplest case merge

can be characterized as union of fields of two RTs, for example for R1 and R2 in (3). In

the event of label-type clashes between labels in two RTs (i.e. cases where R1 contains

l1 : T1 and R2 contains l1 : T2), in this chapter we assume all examples like this T1

and T2 are incompatible (disjoint in the type hierarchy), in which case the resulting

R1 ⋗ R2 is ⊥.

if R1 =

[

l1 : T1

l2 : T2

]

and R2 =

[

l2 : T2

l3 : T3

]

R1 ∧ R2 ≡ R1 ⋗ R2 =





















l1 : T1

l2 : T2

l3 : T3





















(3)

3.1.3 Join types and the minimal common supertype operation

Here we also define a dual of the merge operation, not found in the TTR literature,

which is necessary for the analysis below: what we call the minimal common supertype

5In TTR two types T1 and T2 are equivalent iff for any object a in the domain such that iff a : T1 then

a : T2 and vice-versa. This extends to record types.
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operator ⋖ . While technically the minimal common supertype of R1 and R2 is the join

type R1 ∨ R2, here, for reasons that will become apparent below in the discussion on

type lattices, we are also interested in isolating the minimal common supertype of two

RTs R1 and R2 which is still a non-disjunctive RT, which, when there are no clashing

type judgements, amounts to field intersection as below in (4). Where there are label-

type clashes between fields in two RTs, i.e. where R1 contains l1 : T1 and R2 contains

l1 : T2, in the examples in this chapter we assume the minimal common supertype of

T1 and T2 is the most general type Type, and in these cases the field is omitted in the

result of R1 ⋖ R2. Note the minimal common supertype RT of multiple RTs is generally

not equivalent to their join type as will be explained.

if R1 =

[

l1 : T1

l2 : T2

]

and R2 =

[

l2 : T2

l3 : T3

]

(4)

R1 ⋖ R2 =

[

l2 : T2

]

3.1.4 Going probabilistic

While classical type theory has been the predominant mathematical framework in nat-

ural language semantics for many years (Montague, 1974, inter alia), it is only recently

that probabilistic type theory has been discussed for this purpose. Similarly, type-

theoretic representations have been used within dialogue models (Ginzburg, 2012);

and probabilistic modelling is common in dialogue systems (Young et al., 2013, inter

alia), but combinations of the two remain scarce. In this chapter this connection is

made, taking Cooper et al. (2014, 2015)’s probabilistic TTR as the principal point of

departure for modelling incremental inference in dialogue as described above.

At the time of writing there had been no methods for practical integration of prob-

abilistic type-theoretic inference into a dialogue system; here we discuss computa-

tionally efficient methods for implementation. We argue for their efficacy in simple

referential communication domains, but simultaneously suggest the methods could be

extended to larger domains and additionally used for real-time learning in future work.

Given that TTR has a highly flexible rich type system, variants have been consid-

ered with type judgements corresponding to real number valued perceptual data used

in conjunction with linguistic context, such as those representing visual information

(Larsson, 2011; Dobnik et al., 2013), demonstrating its potential for situated, embod-

ied and multi-modal dialogue systems. The possibility of integration of perceptron

learning (Larsson, 2011) and Naive Bayes learning (Cooper et al., 2014) into TTR

show how linguistic processing and probabilistic conceptual inference can be treated

in a uniform way within the same formal system.

Probabilistic TTR as described by Cooper et al. (2014, 2015) replaces the categor-

ical s : T judgement, the judgement that it is true or false that an object s is of type

T , with the real number valued p(s : T ) = v where v ∈ [0,1].6 The authors show how

standard probability theoretic and Bayesian equations can be applied to type judge-

ments and how an agent might learn from experience in a simple classification game.

6Several people we have discussed this with are not convinced a type judgement can be probabilistic.

We remain agnostic to the plausibility of a non-conditional judgement such as this one being real-valued,

however we do think real-valued conditional probability judgements are realistic. We thank David Schlangen

and Arash Eshghi for discussions on this. The view we set out below can be cashed out purely in terms of

conditional type judgements, however the conditional judgement may at times be notationally suppressed

where appropriate and in a consistent manner– these cases will be noted where they crop up.
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In their example, the agent is presented with instances of a situation with associated

type judgements and it learns with each round by updating its set of probabilistic type

judgements to best predict the type of object in focus – in this case updating the prob-

ability judgement that something is an apple given its observed colour and shape, i.e.

p(s : Tapple|s : TS hp, s : TCol) where S hp ∈ {shp1, shp2} and Col ∈ {col1, col2}. From a

cognitive modelling perspective, these judgements can be viewed as learning concepts

from probabilistic perceptual information, and if framed as a language acquisition sce-

nario these concepts could be associated with words. We use similar methods in the toy

reference domain below, but show how complex type judgements can be constructed

efficiently, and how conditional probabilistic judgements can be made incrementally

without exhaustive iteration through individual type classifiers, as the mechanisms in

Cooper et al. (2014, 2015) and Kennington and Schlangen (2014)’s models require.

For the exposition of probabilistic TTR, we repeat some of Cooper et al.’s calcula-

tions and show some equivalences not described by the authors. We describe our effi-

cient order-theoretic and graphical methods for generating and incrementally retrieving

probabilities in Section 3.2.

Cooper et al. (2015), under the assumption that type judgements can be real-valued,

define conditional probability of an object being of type R2 given it is of type R1 as in

(5). This is the most important judgement in probabilistic TTR, due to the framework’s

motivation: an agent can judge a situation s is of a given situation type, given the

evidence that it is of other situation types. In this way an agent is positioned as a

classifier of situations given the evidence available to it. Here we assume s can be a

record, not just a basic type, and so R1 and R2 can be record types.

p(s : R2|s : R1) =
p(s : R1 ∧ R2)

p(s : R1)
(5)

Given classical probability theoretic equivalences, they define the probability of a sit-

uation being of a meet (conjunctive) and join (disjunctive) types of two basic types or

RTs in terms of the standard product rule in (6) and sum rule (7) in probability theory:

p(s : R1 ∧ R2) = p(s : R1)p(s : R2|s : R1) (6)

p(s : R1 ∨ R2) = p(s : R1) + p(s : R2) − p(s : R1 ∧ R2) (7)

It is practically useful, as we will describe below, that the join probability can be

computed in terms of the meet. Given the classical probability theoretic definitions for

the meet and the join type they show it is possible to sustain the below:

p(s : R1 ∧ R2) ≤ p(s : R1) (8)

p(s : R1 ∧ R2) ≤ p(s : R2)

p(s : R1) ≤ p(s : R1 ∨ R2)

p(s : R2) ≤ p(s : R1 ∨ R2)

Also, there are equivalences between meet types, join types and subtypes in terms

of type judgements as described above, in that assuming if R1 ⊑ R2 then p(s : R2 |s :

R1) = 1, we have:
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if R1 ⊑ R2

p(s : R1 ∧ R2) = p(s : R1)

p(s : R1 ∨ R2) = p(s : R2)

p(s : R1) ≤ p(s : R2)

(9)

We return to an explanation for these classical probability equations holding within

probabilistic TTR below in terms of record type lattices. We make a remark here that

the meet type probability of two conjuncts is the same as the probability of the RT

result from the merge operation of those conjuncts in (10). This is the case due to

the extensional equivalence of a (non record type) meet type R1 ∧ R2 and the resulting

record type from the operation R1 ⋗ R2 as shown in (1). For this reason, all the ∧

conjunctions in the above equations can be replaced by ⋗ and the equations will still

hold. The same is not true of the relationship between the join ∨ type and the ⋖

operation as we will explain.

p(s : R1 ∧ R2) = p(s : R1 ⋗ R2) (10)

Through the subtype relation, merge operator and minimal common super type op-

erator, we will now be able to show why these classical probability theoretic equations

hold in TTR, due to the structure of record type lattices, and how these are useful

objects for incremental dialogue processing.

3.2 Probabilistic Record Type lattices

To support efficient reference processing, we represent dialogue domain concepts as

partially ordered sets (posets) of RT judgements. This is inspired by the use of RT

lattices in automatic grammar learning by Eshghi et al. (2013), however here they are

fleshed out in a formal way to provide an interface to a general reasoning system and

probabilistic TTR.

A poset has several advantages over an unordered set of un-decomposed record

types: the possibility of incremental type checking; increased speed of type checking,

particularly for pairs of or multiple type judgements; immediate use of type judgements

to guide system decisions; inference from negation; efficient construction of a question

under discussion (QUD) structure that includes question relevance values contingent

on probability; and modelling the learning of type judgements. We leave the final two

challenges for future work, but discuss the others here.

From a set of RTs which are semantically disjoint (i.e. for any two RTs in this set,

their record inhabitants in the type system are disjoint), it is possible to construct a

valid record type lattice. As per set-theoretic lattices, RT lattices can be visualised as

Hasse diagrams such as those in Figure 2, however here the ordering arrows show ⊑

(‘is a subtype of’) relations from descendant to ancestor nodes, rather than the normal

set inclusion relation.

To characterize a RT lattice L ordered by ⊑, we adapt Knuth (2005)’s description

of lattices in line with standard order theory. L is a partially ordered set of RTs closed

under the meet and join operations, whereby all pairs of elements have a unique element

that is their meet and a unique one that is their join. This is to say, for a pair of RT

elements Rx and Ry, their lower bound is the set of all Rz ∈ L such that Rz ⊑ Rx and

Rz ⊑ Ry, and their unique greatest lower bound is their meet. The meet of any two RTs

9



(a)

R3 = [] = ⊤

R1 =

[

a : T1

b : T2

]

R2 =

[

a : T2

b : T1

]

R0 = ⊥

(b)

R8 = [] = ⊤

R4 =

[

b : T1

]

R5 =

[

a : T1

]

R6 =

[

b : T2

]

R7 =

[

a : T2

]

R1 =

[

a : T1

b : T1

]

R2 =

[

a : T1

b : T2

]

R3 =

[

a : T2

b : T2

]

R0 = ⊥

Figure 2: Record Type lattices ordered by the subtype relation, adapted from Eshghi

et al. (2013). While (a) happens to be complemented, RT lattices are not in general, as

(b) shows.

10



Rx and Ry in L is the RT resulting from Rx ⋗ Ry, and, given (3), is also extensionally

equivalent to the meet type Rx ∧ Ry. Dually, if the unique least upper bound exists

for Rx and Ry this is their join in L and in TTR terms is the result of Rx ⋖ Ry, but

not necessarily extensionally equivalent to the join type Rx ∨ Ry. This is due to the

fact that the result of Rx ⋖ Ry may be extensionally equivalent to the minimal common

supertype of other pairs of RTs in L (and consequently may be the type of different

objects or records which are not of type Rx or Ry), so Rx ⋖ Ry can be a more general

type than the disjunctive type Rx ∨ Ry. For example in Fig. 2 (b), the join element in

the lattice of R1 and R3, consistent with the join being the ⋖ operator, is R8, the empty

record type, as they have no fields in common. However this is not equivalent to the

disjunctive join type as the empty record type includes all objects of type R2 as well,

not just those of type R1 and R3.

The decision not to include disjunctive and conjunctive types directly on L, only

using RTs and operations that yield new RTs, is motivated by limiting the size (and

therefore complexity) of the lattice, and also by keeping consistency in the type hier-

archy: the limitation of the lattice to types that are only of record type means this is

a record type lattice. As just shown, while the extensionally equivalent RTs for meet

types are included in L, elements representing join types are not in general. In sum-

mary, given the ordering relation⊑, the join and meet operations under which the lattice

is closed are ⋖ and ⋗ .7

We now introduce other relevant terminology. One element covers another if it is

a direct successor to it in the subtype hierarchy. L has a greatest element (⊤) and least

element (⊥), with the atoms being the elements that cover ⊥; in Figure 2 (b0 if R0 is

viewed as ⊥ , the atoms are R1, R2 and R3. Join-irreducible elements are those which

cannot be expressed as the join of two other elements– in Figure 2 (a) the only join-

irreducible elements are the atoms and ⊥, however in Figure 2 (b) they consist of the

⊥, the atoms and R4 and R7.

In line with standard lattice theory, given the characterization of the meet and join

operations as ⋖ and ⋗ , a RT lattice L ordered by the subtype relation obeys the fol-

lowing rules for any three elements x, y and z in L:

x ⋖ x = x; x ⋗ x = x (L1. Idempotency)

x ⋖ y = y ⋖ x; x ⋗ y = y ⋗ x (L2. Commutativity)

x ⋖ (y ⋖ z) = (x ⋖ y) ⋖ z; x ⋗ (y ⋗ z) = (x ⋗ y) ⋗ z (L3. Associativity)

x ⋖ (x ⋗ y) = x ⋗ (x ⋖ y) = x (L4. Absorption)

Assuming RT lattices are bounded they satisfy the following identity laws:

x ⋖ ⊥ = x (I1.)

x ⋗ ⊤ = x (I2.)

x ⋗ ⊥ = ⊥ (I3.)

x ⋖ ⊤ = ⊤ (I4.)

RT lattices ordered by the subtype relation are distributive lattices as they obey the two

distributivity relations:

7Graphically, the join of two elements can be found by following the connecting edges upward until they

first converge on a single RT, e.g. R1 ⋖ R2 = R5 in Figure 2 (a), and the meet can be found by following the

lines downward until they connect to give the result of their merge operation, e.g. R5 ⋗ R6 = R2.
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Figure 3: An assertion lattice of propositions A3 from Knuth (2005)

x ⋗ (y ⋖ z) = (x ⋗ y) ⋖ (x ⋗ z) (D1. Distributivity of ⋗ over ⋖ )

x ⋖ (y ⋗ z) = (x ⋖ y) ⋗ (x ⋖ z) (D2. Distributivity of ⋖ over ⋗ )

A final piece of lattice terminology is that a RT element Rx has a complement if there

is a unique element ¬Rx such that Rx ⋖ ¬Rx = ⊤ and Rx ⋗ ¬Rx = ⊥. The lattice

Figure 2 (a) is complemented as this holds for every element, as R1 complements R2

and vice-versa. However RT lattices in general are distributive but not necessarily

complemented, as shown in Figure 2 (b), where it can be seen, for example, that R3 is

complemented by R1, R4 and R5.

3.2.1 Adding probability to lattices

To explain the incorporation of probabilities into RT lattices, it is necessary to draw

on Knuth (2005)’s work on generalizing a Boolean algebra to the probability calculus

through the use of real-valued inclusion measures on lattices. Knuth shows how a

Boolean algebra of logical statements can be expressed as a distributed complemented

lattice of propositions ordered by the implication (→) relation, a lattice he calls the

assertion lattice (see Figure 3). The assertion lattice is isomorphic to the power set of

its atomic elements, and so it can also be seen as ordered by the subset inclusion relation

⊆, with its meet being set intersection ∩ and its join set union ∪ and complement the

complement set operator ∼. The assertion lattice is distributed and complemented, so

the Boolean operators ∧ and ∨ and ¬ happily coincide with ∩, ∪ and ∼.

Knuth’s Inquiry Calculus extends Boolean algebra to the probability calculus by

characterizing conditional probability p(x|y) as the real-valued degree to which state-

ment y implies x in the assertion lattice. This is calculated in terms of the inclusion

function Z(x, y) for distributive lattices– that is, the degree to which x includes y:

p(x|y) = Z(x, y) =



























1 if y→ x

0 if x ∧ y = ⊥

p otherwise, where 0 ≤ p ≤ 1

(11)
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If (11) is viewed as a lazy evaluation function, when the first two cases do not apply, the

third case p can be calculated by Bayes’ theorem, which can also be formulated purely

through the inclusion measure between pairs of elements in the lattice by adding ⊤ as

a conjunct of the conditional. Knuth’s analog of Bayes’ theorem for distributed lattices

is in (12):

p(x|y) = p(x|y ∧ ⊤) =
p(x|⊤)p(y|x ∧ ⊤)

p(y|⊤)
=

Z(x,⊤)Z(y, x ∧ ⊤)

Z(y,⊤)
(12)

The standard probability sum and product rules for any two statements are also deriv-

able through a similar technique, using the degree of inclusion of join and meet ele-

ments of ⊤ – see Knuth (2005) equations 7-10. When the product rule is applied to the

numerator in (12), we get the standard equation for conditional probability, which can

again be formulated analogously in terms of the inclusion function:

p(x|y) = p(x|y ∧ ⊤) =
p(x ∧ y|⊤)

p(y|⊤)
=

Z(x ∧ y,⊤)

Z(y,⊤)
(13)

All these calculations are possible through using the degree of inclusion Z(x,⊤)

initially assigned axiomatically (as a probability prior) to each join-irreducible element

x of the assertion lattice (which are atoms in a Boolean lattice)– all other probabilities

can be calculated in terms of these using Knuth’s lattice-theoretic analogs to the stan-

dard probability equations. Knuth shows how these equations hold for any distributed

lattice. More detail on this will follow when explaining probability in RT lattices.

3.2.2 Probabilistic RT lattice construction and inference

Having established RT lattices as distributive, we can use Knuth (2005)’s insights to

imbue them with probability values for each element. As Knuth did for sets of state-

ments ordered by the relation ‘implies’, we show how a consistent probability calculus

for RT lattices ordered by the relation ‘is a subtype of ’ falls out naturally from their

structure, showing how Cooper et al. (2014, 2015)’s equations for probabilistic TTR

shown in Section 3.1 can be derived in terms of a real-valued inclusion function on

lattices.

To introduce probabilistic RT lattices, we show one graphically in Figure 4 and use

this as a guide for explanation. It shows a well-known probability theoretic example of

the possible outcomes of two consecutive coin tosses. The sample space for the possi-

ble outcomes here, where H = heads tossed and T = tails tossed, is {HH,HT,TH,TT}. In

the spirit of probabilistic TTR, we take each of these outcomes to be a judgement that

a situation is of a given record type with a probability value. These four situation types

are modelled as the atoms of Figure 4, as their meet types are physically impossible

situations stipulated a priori as the least element ⊥ with probability 0, consistent with

assigning prior values to join-irreducible elements (Knuth, 2005, 2006). Each atom is

a pair of an RT (shown on the left), and a probability value of the situation s being of

that type (on the right of each element).

For each atom Rx we assign a prior probability judgement of a situation being

judged of its record type with probability 1, simulating 4 random trials, as we use a

uniform distribution for this disjunction of situation types, assuming a fair coin. Fol-

lowing Cooper et al. (2014, 2015), the prior judgement of s : Rx is stored in a set Rx,

whose sum of probability judgements we notate ‖Rx‖. The prior assignments are in fact

probability values when normalized over the sum of the values of all the atomic prob-

ability judgements, a set we will call L, which in terms of a probability sample space

13



ATOMS:

‖HH‖ = 1

‖HT‖ = 1

‖TH‖ = 1

|TT‖ = 1

‖L‖ = 1 + 1 + 1 + 1 = 4

⊤ = []
‖HH‖+‖HT‖+‖TH‖+‖TT‖

‖L‖
= 1

H =
[

H : Heads
]

‖HH‖+‖TH‖+‖HT‖
‖L‖

T =
[

T : Tails
]

‖TT‖+‖HT‖+‖TH‖
‖L‖

HaT =

[

H : Head

T : Tails

]

‖HT‖+‖TH‖
‖L‖

H1 =

[

H : Heads

E1 : First(H)

]

‖HH‖+‖HT‖
‖L‖

H2 =

[

H : Heads

E2 : S econd(H)

]

‖HH‖+‖TH‖
‖L‖

T2 =

[

T : Tails

E2 : S econd(T )

]

‖HT‖+‖TT‖
‖L‖

T1 =

[

T : Tails

E1 : First(T )

]

‖TH‖+‖TT‖
‖L‖

H2aT =





















H : Heads

T : Tails

E2 : S econd(H)





















‖TH‖
‖L‖

T2aH =





















H : Heads

T : Tails

E2 : S econd(T )





















‖HT‖
‖L‖

HH =





















H : Heads

E1 : First(H)

E2 : S econd(H)





















‖HH‖
‖L‖

HT =





























H : Heads

T : Tails

E1 : First(H)

E2 : S econd(T )





























‖HT‖
‖L‖

TH =





























H : Heads

T : Tails

E1 : First(T )

E2 : S econd(H)





























‖TH‖
‖L‖

TT =





















T : Tails

E1 : First(T )

E2 : S econd(T )





















‖TT‖
‖L‖

⊥ = 0

Figure 4: Probabilistic record type lattice L with uniform atomic probabilities for 4

possible outcome situations for two tosses of a coin

is equivalent to the certain event. ‖L‖ normalizes the sum of probability judgements

for each record type judgement ‖Rx‖ to give its prior probability ‖Rx‖

‖L‖
= p(s : Rx) in

line with standard probability assumptions– consequently the real valued judgements

initially assigned to the atoms need not in fact sum to unity (Knuth, 2005). In Knuth’s

terms, these initial assignments are the inclusion values Z(Rx,⊤), also equivalent to the

unconditional probability p(s : Rx).

The role of TTR here would be trivial if the atoms were simple, non-decomposible

type judgements– the only knowledge of the situation available to an agent reasoning

with type judgements would be a single probability value attached to each atom– for

instance, given the uniform assignment of priors one could calculate the probability

of tossing two heads as p(s : HH) = 1
4
. However, in reality, an agent might like to

know the probability of other events, such as the event that heads will be tossed at least

once, or the probability that the second toss is tails, or a conditional probability of a

heads on the second toss given a heads on the first toss. One could use a σ-algebra

and generate all possible subsets of outcomes, however this does not capture what the

types of interest for an agent might be. For this purpose, the possible outcomes, rather

than being atomic, can be structured with relevant type judgements on the situation,

for which record types provide a natural representation. For example, the event of two

heads tosses HH can be represented through a record type including the heads toss

outcome type judgement [ H : Heads ] and two fields with PType judgements which

are dependent on H, representing the outcome of both the first and second tossing

events being of type Heads, as in (14).
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



















H : Heads

E1 : First(H)

E2 : S econd(H)





















(14)

The choice of representation for the atoms’ RT situation types determines which

type judgements can be made and represents the agent’s ‘take’ on the entire situation.

The atoms in Figure 4 all have the same amount of structured information for each

outcome as (14), which we hope is intuitively relevant for a coin-tossing situation. A

model of how an agent decides to a frame a situation is beyond the scope of this chapter.

From the atomic situation types, one can build a RT lattice which includes all pos-

sible minimal common supertype judgements of the situation, and the type judgements

required to ensure the merge operation characterizes the meet, all with the uncondi-

tional probability p(s : Rx) ‘stored’ at each element Rx. This is achieved through

a simple bottom-up graph-based construction procedure which consumes the atoms

incrementally, running in time polynomial in the number of atoms, detailed fully in

Hough and Purver (fcmg). It terminates when all minimal common supertypes have

been generated by the ⋖ operation defined in simple cases by field intersection (4),

and added to the lattice, leaving the maximally common supertype of the whole lattice

as an element labelled ⊤ (possibly the empty type [ ]). The unconditional probability

for each type judgement is calculated, in the spirit of Knuth’s inquiry calculus, purely in

terms of the unconditional probability assigned to the atoms– upon generating the min-

imum common supertype of two elements the algorithm ‘stores’ the atomic judgements

the two elements contain at that new element in a set, so that no judgements are un-

necessarily counted twice within the elements, consistent with the inclusion-exclusion

principle of lattice joins (Knuth, 2005). Consequently every element’s probability is

given in terms of the atomic type judgements it contains, normalized by the sum of all

atomic judgements ‖L‖.

The resulting lattice in our example is as in Figure 4. The labels for each record

type such as H for [ H : Heads ] are merely for explanation, and in reality the algorithm

simply labels the nodes R0..Rn for a lattice with n + 1 elements.8 We will refer to RT

judgements below with respect to these labels. If one checks Figure 4, all the expected

prior probabilities given on the right side of each record type make sense– for example,

the probability of a heads event, i.e. p(s : H), is ‖HH‖+‖T H‖+‖HT ‖
‖L‖

=
3
4

, the probability of

tossing heads first, p(s : H1), is ‖HH‖+‖HT ‖
‖L‖

=
1
2
, and the probability of tossing tails first,

p(s : T1), is also 1
2
, calculated from ‖T H‖+‖T T ‖

‖L‖
.

3.2.3 Conditional probability, meets, joins and negative types

A RT lattice L such as Figure 4 can be used as a reasoning system to make inferences

in light of partial information becoming available from an ongoing situation– in our

case of modelling incremental reference processing this is semantic information from

an utterance in progress. We model the principal inference task as predicting the like-

lihood of relevant type judgements Rx ∈ L of a situation s, given judgements of the

form s : Ry we have so far. To do this we use conditional probability judgements from

Knuth’s work on distributive lattices described above, but here using the ⊑ relation in

place of→ to give (15).

8The labelling convention is hopefully intuitive for discussion purposes here– H1 is the label for the RT

judgement that the first throw is heads, T2 the judgement that the second throw is tails, and so on. a is used

in the labels to denote ‘and’, so HaT stands for the judgement that there is a heads and tails event in this

situation, and so on.
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The fact that conditional probability in probabilistic TTR can be formulated in

terms of the Z inclusion measure on distributed lattices gives rise to an interesting

formulation of type judgements: the likelihood of a situation being of type Rx given

it is of type Ry is the degree to which Ry ⊑ Rx. We note, as per Knuth’s work, that

unconditional probabilities are the degree to which the element includes ⊤, so that

Z(Rx,⊤) = p(s : Rx) and Z(Rx ⋗ Ry,⊤) = p(s : Rx ⋗ Ry) for all elements.

p(s : Rx|s : Ry) = Z(Rx,Ry) =



























1 if Ry ⊑ Rx

0 if Rx ⋗ Ry = ⊥

p otherwise, where 0 ≤ p ≤ 1

(15)

If treated as a lazy evaluation function, in cases where the first two cases do not apply,

the third case, the real-valued degree of Ry ⊑ Rx, can be calculated using the TTR

analog rules of Knuth’s inquiry calculus, and also using Cooper et al.’s conditional

probability calculation (5) in Section 3.1, replacing the ∧ with ⋗ to be in line with the

meet operation of the RT lattice. This gives (16), which is equivalent to Cooper et al.’s

equation due to Remark (10).

p(s : Rx|s : Ry) =
p(s : Rx ⋗ Ry)

p(s : Ry)
(16)

A conditional probability analog for record types can also be formulated as in (17),

adapting Knuth’s equation for distributive lattices (13), where the Z function again

functions as in (15). We show, given Z(Rx,⊤) = p(s : Rx) and Z(Rx ⋗ Ry,⊤) = p(s :

Rx ⋗ Ry) for all elements and the equivalence ⋗ ≡ ∧, Cooper et al.’s equation can be

derived from the inclusion measures:

p(s : Rx|s : Ry) = p(s : Rx|s : Ry ∧ ⊤) =
p(s : Rx ∧ Ry|s : ⊤)

p(s : Ry|s : ⊤)
(Knuth, 2005)

=
p(s : Rx ⋗ Ry|s : ⊤)

p(s : Ry|s : ⊤)

=
Z(Rx ⋗ Ry,⊤)

Z(Ry,⊤)

=
p(s : Rx ⋗ Ry)

p(s : Ry)

=
p(s : Rx ∧ Ry)

p(s : Ry)
(Cooper et al., 2014, 2015) (17)

If each atom Rx is assigned an initial probability value Z(Rx,⊤), Knuth’s inclusion

measure analog will work. To illustrate, returning to our coin-tossing example, given

the first toss is a heads, an agent might like to know the probability of the second

toss being heads, i.e. p(s : H2 | s : H1). Through Knuth’s formulation, we need

the numerator Z(H1 ⋗ H2,⊤), which can be found on the lattice by Z(HH,⊤), which

is 1
4
, and the denominator Z(H1,⊤), which is 1

2
, giving the expected overall result

p(s : H2 | s : H1) = 1
2
. As shown at the bottom of (17), Cooper et al.’s equation is

equivalent to Knuth’s measure, and for this example Z(HH,⊤) = p(s : HH) = 1
4

and

Z(H1,⊤) = p(s : H1) = 1
2
.

Similarly, Knuth’s product and sum rule analogs will work with this formulation

for RT lattices to find the probability of meet and join types. One can derive Cooper

et al.’s equation again from Knuth’s, given Z(Rx,⊤) = p(s : Rx) and the identity law
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Rx ⋗ ⊤ = Rx. The below holds for all the meets in the lattice ⋗ as well as the meet

types, due to their equivalence.

p(s : Rx ∧ Ry) = p(s : Rx|s : ⊤)p(s : Ry|s : Rx ∧ ⊤) (Knuth, 2005)

= p(s : Rx|s : ⊤)p(s : Ry|s : Rx ⋗ ⊤)

= Z(Rx,⊤)Z(Ry,Rx ⋗ ⊤)

= Z(Rx,⊤)Z(Ry,Rx)

= p(s : Rx)p(s : Ry|s : Rx) (Cooper et al., 2014, 2015)

= p(s : Rx ⋗ Ry) (equivalent element on RT lattice) (18)

In our adaptation of Knuth’s formulation, given this is equivalent to Z(Rx,⊤)Z(Ry,Rx),

it can be said the probability of a situation being of type Rx and of type Ry is the degree

to which they have subtypes in common. To illustrate in our running example, an agent

may want to know the probability of the situation containing a heads toss and a tails

toss, i.e. p(s : H ∧ T ). In Knuth’s formulation we would need Z(H,⊤), which is 3
4

and Z(T,H), which can be calculated through conditional probability given in (17),

giving
Z(T ⋗ H,⊤)

Z(H,⊤)
=

Z(HaT,⊤)

Z(H,⊤)
=

2
3
, and so, given 3

4
× 2

3
=

1
2

we get the expected result.

More straightforwardly in practice however, this value could be stored on the lattice as

H∧T ≡ H ⋗ T , and the probability can be found directly on an element H ⋗ T = HaT ,

where p(s : HaT ) = 1
2
.

The probability of the situation being of the disjunctive join type can be derived in a

similar manner from Knuth’s inclusion measure of probability, and via the equivalence

∧ ≡ ⋗ . It is possible to derive Cooper et al.’s standard join probability definition,

given Z(Rx,⊤) = p(s : Rx) and Z(Rx ⋗ Ry,⊤) = p(s : Rx ⋗ Ry) for all elements:

p(s : Rx ∨ Ry) = p(s : Rx|s : ⊤) + p(s : Ry|s : ⊤) − p(s : Rx ∧ Ry|s : ⊤) (Knuth, 2005)

= p(s : Rx|s : ⊤) + p(s : Ry|s : ⊤) − p(s : Rx ⋗ Ry|s : ⊤)

= Z(Rx,⊤) + Z(Ry,⊤) − Z(Rx ⋗ Ry,⊤)

= p(s : Rx) + p(s : Ry) − p(s : Rx ⋗ Ry)

= p(s : Rx) + p(s : Ry) − p(s : Rx ∧ Ry) (Cooper et al., 2014, 2015) (19)

In our running example, the agent may want to know the probability that there will be

a heads tossed first or a tails tossed second, i.e. p(s : H1 ∨ T2). Before deriving this

calculation, it is worth noting that there is no element on the lattice which represents

an appropriate type judgement of this event. If one were to assume the equivalence

of ⋖ and ∨ in TTR, as Figure 4 shows, the result of H1 ⋖ T2 is ⊤, meaning p(s :

H1 ⋖ T2) = 1, which is not the probability of p(s : H1 ∨ T2), as there is an outcome

T H which should not be included in this type judgement. Disjunctive probabilities are

available through both Knuth and Cooper et al’s equations in terms of the ⋖ operator.

In our example, we can calculate p(s : H1), p(s : T2) and p(s : H1 ⋗ T2) through

simply taking their probability value directly on a pre-computed lattice, or through

Knuth’s inquiry calculus. These probabilities are p(s : H1) = 1
2
, p(s : T2) = 1

2
and

p(s : H1 ⋗ T2) = p(s : HT ) = 1
4
, which, when plugged into Cooper et al.’s equation in

19 give the expected 3
4
.

It is worth noting that Knuth’s inquiry calculus equations still hold for the lattice

join ⋖ , only if each element is expressed as the atoms of which it is a join, i.e. H1 =

HH ⋖ HT, as the inclusion-exclusion principle for the generalized sum rule calculation

requires all the disjuncts as in (20), where we generalize a join operation as ⊔ and
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meet operation ⊓ on any lattice. If we take ⊔ to be ⋖ , then R1...Rn must be atoms for

this to give the correct value, however, if ⊔ is ∨, then this calculation will work for any

lattice element without having to represent its constituent atoms. Given the equivalence

⋗ ≡ ∧, ⊓ can be either of these in the below.

p(R1 ⊔ R2 ⊔ · · · ⊔ Rn|⊤) =

n
∑

i=1

p(Ri|⊤) (20)

−
∑

i< j

p(Ri ⊓ R j|⊤)

+

∑

i< j<k

p(Ri ⊓ R j ⊓ Rk|⊤)

− · · ·

where if ⊔ is ⋖ , R1...Rn must be atoms in the RT lattice.

otherwise if ⊔ is ∨, R1...Rn can be any record types.

⊓ can be ∧ or ⋗

While the conditional equations above condition on positive type judgements, an

agent may want to condition on negative RT judgements, that is to obtain the probabil-

ity a situation is of a RT in light of evidence that it is not of a given RT. As shown above,

an RT lattice is distributive but not guaranteed to be complemented, so we cannot be

guaranteed to find a unique complement element on L as was the case for Knuth’s

Boolean lattices, however we can still calculate p(s : Ry|s : ¬Rx) by obtaining p(s : Ry)

in L modulo the probability mass of Rx and that of its subtypes as in (21).

p(s : Ry|s : ¬Rx) =















0 if Ry ⊑ Rx

p(s:Ry)−p(s:Rx ⋗ Ry)

p(s:⊤)−p(s:Rx)
otherwise

(21)

In our running example, an agent may know the first toss is not heads, and given this

information wants to calculate the probability that there will be a heads, i.e. p(s : H|s :

¬H1). Through (21) the probability is
p(s:H)−p(s:H ⋗ H1)

p(s:⊤)−p(s:H1)
= ( 1

2
− 1

4
) ÷ (1 − 1

2
) = 1

2
.

3.2.4 Efficiency gains through graphical search

While all calculations can be done algebraically in terms of the atoms’ probabilities, the

computational advantage of a pre-constructed finite lattice is that the subtype relation

judgements and atomic, meet and join probabilities required for (15) - (21) can be

found efficiently through graphical search algorithms by characterising L as a Directed

Acyclic Graph (DAG). In Figure 4, the elements can be seen as nodes, and the subtype

relation ordering arrows can be viewed as reachability edges which make ⊥ the source

and ⊤ the sink. With this characterisation, if Ry is reachable from Rx then Rx ⊑ Ry.

In DAG terms, the meet of two RTs Rx and Ry, Rx ⋗ Ry, can be found at their lowest

common ancestor (LCA) node – e.g. p(s : H1 ⋗ H2) in Figure 4 can be found as 1
4

directly at node HH. Note if Ry is reachable from Rx, i.e. Rx ⊑ Ry, then due to the

equivalences listed in (9) and by Remark (10), p(s : Rx ⋗ Ry) can be found directly
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at Rx. If the meet of two nodes is ⊥ (e.g. HH and HT in Figure 4), then their meet

probability is 0 as p(s : ⊥)=0.

As for the minimal common supertype (join element) of two RTs Rx and Ry, Rx ⋖ Ry,

this can be found at their highest common descendent (HCD) node – e.g. p(s :

HH ⋖ HT) in Figure 4 can be found as 1
2

directly at node H1. Note if Ry is reach-

able from Rx, i.e. if Rx ⊑ Ry, then due to the equivalence available for this ordering

situation Ry ⋖ Rx = Ry, then p(s : Rx ⋖ Ry) can be found directly at node Ry. If the join

of two nodes is ⊤ (e.g. H and T in Figure 4), then their minimal common supertype

probability is 1 as p(s : ⊤)=1.

Finding the lattice meet or join of two nodes, due to the symmetrical equivalence of

finding the LCA node and finding the HCD node (with just a reverse in the reachability

relation for the HCD case), is a LCA search problem for a DAG (Aho et al., 1976), for

which there are widely developed and efficient algorithms.

3.3 DS-TTR and the DyLan dialogue framework

Moving towards a dialogue application, if we consider the atoms in Fig. 4 to be domain

concepts, or possible information states (Traum and Larsson, 2003; Ginzburg, 2012),

for a dialogue system, it is easy to see graphically how the RT lattice L can be used for

incremental inference in terms of a downward search from the initial underspecified

⊤ state. The DyLan framework (Purver et al., 2011) we use here, reasons with RTs

incrementally as information states in this way– as incrementally specified RTs become

available from the interpretation process they are matched to those in L to determine

how far down towards the final states our current state allows us to be. In terms of

linguistic processing, different sequences of words or utterances lead to different paths

to these atoms, and one can make probability judgements about the likelihood of the

final states, or indeed any other states encoded in L as shown above.

To achieve this we need a semantic construction process of record types, which,

in line with our motivation of modelling incremental reference processing, should be

word-by-word incremental. For this purpose we use TTR combined with the gram-

mar formalism Dynamic Syntax (DS, Kempson et al., 2001; Cann et al., 2005, inter

alia) in DS-TTR (Purver et al., 2011; Eshghi et al., 2012, 2013) which integrates TTR

representations into inherently incremental DS parsing.

While we do not go into detail here, and refer the reader to (Purver et al., 2011;

Eshghi et al., 2012, 2013), DS-TTR yields incremental type judgements as words are

processed strongly incrementally (left-to-right, word-by-word). We show example DS-

TTR record type output for the utterance “the yellow square” in Figure 5. As in this

chapter we are concerned with reference processing, we only consider the embedded

record type labelled r in these record types, which represents the restrictor of an iota

term, representing the proof type of a unique referent of type e (Cann et al., 2005). The

utterances we deal with here are definite referring expressions which refer to unique

objects in a scene.

3.3.1 Extending DyLan with probability

Given DyLan’s DS-TTR parser provides RTs incrementally, and the context of a sit-

uation represented by an RT lattice L is available, it becomes possible to make prob-

abilistic judgements on a word-by-word basis about a set of RTs of interest, such as

the possible final states of the dialogue. In line with Knuth (2005), we will call the

set of RTs of interest the central issue, or I. Here we assume all Ry ∈ I are disjoint
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Figure 5: Incremental semantic construction by DS-TTR

in L, such as the atoms, ensuring a valid probability distribution. To make inference

about the degree to which I is resolved, that is, given current evidence Rx whether the

agent can predict p(s : Ry | s : Rx) = 1 for some Ry ∈ I, or the confidence it has in

its best prediction and its competitor hypotheses, the interpretation process only need

output a conditional probability distribution PRy∈I(s : Ry|s : Rx). It is straightforward to

characterize a standard Maximum Likelihood (ML) multi-class probabilistic classifier

for a central issue I and conditioning type judgement s : Rx in these terms, outputting

the best ‘hard’ prediction and its probability (or confidence in its prediction) by the

standard arg max and max functions in (22) and (23), respectively.9

R̂y = arg max
Ry∈I

p(s : Ry|s : Rx) (22)

p̂ = p(s : R̂y|s : Rx) = max
Ry∈I

p(s : Ry|s : Rx) (23)

All conditional probabilities p(s : Ry|s : Rx) can be found on L using the equations in

Section 3.2 and direct look-up on L when used graphically.

Here we assume the conditioning evidence s : Rx comes from a DS-TTR parse.

Mapping between DS-TTR’s natural language semantics and information states (which

may contain non-linguistic context), is not trivial (see Eshghi and Lemon, 2014, for

discussion), however here we assume a simple type check which checks the RT yielded

by the latest word, Rw, against each RT Rx ∈ L in a top-down graph search from ⊤,

until type matched, such that Rw ⊑ Rx and Rx ⊑ Rw.

Given the probabilistic prediction of dialogue states is possible, probabilistic Dy-

Lan interpretation can now be defined. Purver et al. (2011) show the standard DyLan

interpretation process is DAG-based, whereby parsing consists of adding new edges

from the current right frontier vertex of the parse graph and a new vertex, and linking

it to a RT concept. A probabilistic extension of this is the function DylanInterpret in

9Technically the arg max function returns a prediction set which may have multiple elements, if two or

more type judgements have the same highest probability value.
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(24), taking arguments of the interpretation graph vertex S i it is interpreting from, the

current word being consumed w and the maximal RT compiled so far maxRT . DyLan

is initialized by setting edge S i as S 0 (the source of the DAG) and maxRT as the empty

record type [] before the first word is consumed. A functional call to the DS-TTR

parser DSTTRparse(S i,w) outputs a tuple 〈Rw, p〉 of the output Rw and probability p

of the parse.10 We call the conditional probability distribution over RTs in the central

issue I the variable Hypotheses, which is continuously updated word-by-word.

(24) function DylanInterpret(S i, w, maxRT)

〈Rw, p〉 = DSTTRparse(S i ,w) ⊲Maximal semantics with probability from parsing word.

Hypotheses = PRy∈I(s : Ry|s : Rw ⋗ maxRT) ⊲ Use parse output as conditioning evidence.

addEdge(S i, newVertex(),Rw ⋗ maxRT) ⊲ Add new edge with new RT judgement.

end function

3.3.2 Modelling self-repairs

As Hough and Purver (2012); Eshghi et al. (2015) show, interpreting repaired speech

is naturally modelled in DyLan through backtracking over interpretation edges in light

of an unlikely DS-TTR parse. We can learn or stipulate a real-valued threshold gram-

matical for an acceptable level of grammaticality, and when a parse probability from

DSTTRparse(S i,w) falls below this, backtracking along the DAG is initiated. With the

probabilistic interpretation function in (24), it is now also possible to detect irrelevant

content arising from interpretation in terms of the maximal probability in the distri-

bution from PRy∈I(s : Ry | s : Rw ⋗ maxRT ) being lower than a real-valued threshold

relevant.11 Here we also allow low-relevance judgements to initiate backtracking and

then allow the negation of RTs linked to the edges backtracked over as conditioning

negative type judgements for the state classifier of the form PRy∈I(s : Ry|s : ¬Rw). This

follows evidence that dialogue agents parse self-repairs efficiently and that repaired di-

alogue content (reparanda) is given special status but not removed from the discourse

context (Hough and Purver, 2012; Ginzburg et al., 2014). This gives a modified defini-

tion for DylanInterpret in (25).

(25) function DylanInterpret(S i, w, maxRT )

〈Rw, p〉 = DSTTRparse(S i ,w) ⊲Maximal semantics with probability from parsing word.

Hypotheses = PRy∈I(s : Ry|s : Rw ⋗ maxRT ) ⊲ Use parse output as conditioning evidence.

if p < grammatical or maxRy∈I Hypotheses < relevant then ⊲ Repair detected?

Hypotheses = PRy∈I(s : Ry|s : ¬Rw) ⊲ Update hyps based on negative evidence.

DylanIntepret(S i−1, w, ¬Rw) ⊲ Backtrack through recursion.

addEdge(S i , newVertex(),Rw ⋗ maxRT ) ⊲ Successful, add new edge with new RT judgement.

end function

4 Simulating incremental reference processing

With the RT lattice based classification and prediction and the DyLan dialogue frame-

work at hand it becomes possible to model incremental reference processing consistent

with over-specification phenomena and Brennan and Schober (2001)’s experimental

results on repaired referring expressions.

We model a simple reference identification task where an instructor produces utter-

ances describing an object which an instructee comprehends and reacts to by selecting

10In future work, the probability value p will be used for reasoning within RT lattices.
11This version of relevance is simplified here, but Hough and Purver (2014a) and Hough and Purver (fcmg)

characterize this information-theoretically.
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the object they think best fits the description as quickly as possible. The visual stimulus

available to both parties is as in Figure 6.

Figure 6: Visual scene for instructor and instructee in the reference identification game

In this game we characterize the referent set of a purple square, yellow square and

yellow circle as mutually exclusive referent situation types (record types), which we

will label PSq, YSq and YC respectively for convenience, and will characterize as the

central issue referents. On the interpretation side, the challenge is to predict the final

reference situation type judgement s : Ry, that the situation s is of record type Ry, given

currently available evidence in the form of current type judgement of the situation

s : Rx. So, as instructions are heard word-by-word the hearer tries to predict the

maximally likely referent as in (26), which we formulate as an incremental prediction

task for a probabilistic TTR classifier as explained above.

arg max
Ry∈referents

p(s : Ry|s : Rx) (26)

Initially, upon scanning the scene, the listener entertains a disjunction of possible

referent situations as in Figure 7. We assume before the game has begun the atomic

situations will all have equal probability ( 1
3
), effecting a uniform distribution. Then,

bottom-up the lattice L is built, resulting in that in Figure 8. Again, the labels for RTs

are for convenience in the discussion here.

After the construction, when DylanInterpret consumes the words of referring ex-

pressions incrementally, the probabilities available word-by-word follow the expected

pattern– we show the conditional probability distribution over referents generated by

the model just described at each word in Figure 9 for three referring expressions. The

second row in each table shows the incremental type judgement on L by which the clas-

sifier conditions its output, which, as described above are from an incremental DS-TTR

parse and the maximal semantics from DylanInterpret.

In Figure 9, we model over-specification in “the yellow circle”, which is not opti-

mally brief, as “the circle” would be sufficient to resolve the referent. However this still

follows Fernández (2013)’s principle of incremental informativity, as “yellow” is more

relevant than “the” as it reduces the entropy of the central issue. “The purple square”

is also over-specified by the speaker, as “the purple one”, or “the purple” would be

sufficient for resolution– DyLan resolves the referent upon processing “purple” due to

the fact that in this referent situation p(s : PSQ|s : P) = 1.

For the test case utterance containing self-repair, “the yell-, uh, purple square” we

show a similar probability table in Figure 11. We model Brennan and Schober (2001)’s

finding of disfluent spoken instructions speeding up object recognition, with reference

to the stages in Figure 10. We describe the stages T0-T5 in terms of the judgements

made by the DylanInterpret function as each word is consumed.
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Figure 7: The disjunction of three types of reference situation encoded as record types

ATOMS:

‖PSq‖ = 1

‖YSq‖ = 1

‖YC‖ = 1

‖L‖ = 1 + 1 + 1 = 3

⊤ =
[

x :e
]‖PSq‖+‖YSq‖+‖YC‖

‖L‖
= 1

S q =

[

x : e

shp : square(x)

]

‖PSq‖+‖YSq‖
‖L‖

P =

[

x : e

col : purple(x)

]

‖PSq‖
‖L‖

Y =

[

x : e

col : yellow(x)

]

‖YSq‖+‖YC‖
‖L‖

C =

[

x : e

shp : circle(x)

]

‖YC‖
‖L‖

PSq =





















x : e

col : purple(x)

shp : square(x)





















‖PSq‖
‖L‖

YSq =





















x : e

col : yellow(x)

shp : square(x)





















‖YSq‖
‖L‖

YC =





















x : e

col : yellow(x)

shp : circle(x)





















‖YC‖
‖L‖

⊥ = 0

Figure 8: Record type lattice L with uniform atomic probabilities for a reference situa-

tion.

At T0: ‘the’ (not in Figure 10, but in Figure 11) the interpreter will only output

[ x : e ] = ⊤, giving a uniform p(s : x|s : ⊤) = 1
3

for x ∈ {PSq, YSq, YC}, equivalent to

the atomic priors. At T1: ‘yell-’, the best partial word hypothesis is now “yellow”;12

the interpreter therefore outputs a RT which matches the type judgement s : Y (i.e. that

the referent is a yellow object). Taking this judgement as the conditioning evidence,

the classifier calculates the conditional distribution p(s : PSq|s : Y) = 0, p(s : YSq|s :

Y) = 0.5 and p(s : YC|s : Y) = 0.5 (see the schematic probability distribution at stage

T1 in Figure 10 for the three objects). The meet element probabilities required for the

conditional probabilities can be found graphically as described above.

T2: ‘uh’ does not add any information to the referent situation, and can be con-

sidered a forward-looking disfluency signal (Ginzburg et al., 2014), however at T3:

‘purple’ low probability in the DS-TTR parse causes a self-repair to be recognised,

enforcing backtracking on the parse graph which operates as per the definition for Dy-

12Although our current system does not have this capability, we assume a speech recognition module

which produces word hypotheses from partial words, progress on which has been made in recent years (see

Schlangen and Skantze, 2009).
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Figure 9: Probability distributions for the objects given maximal incremental semantic

information

lanInterpret in (25). The detection of a self-repair repairs the edge s : Y, so according

to DylanInterpret, the type judgement s : ¬Y, i.e. that this is not a yellow object, is

available as soon as the repair has been recognised (T3), without having to wait until

the parsing process has fully integrated the new semantic information (T4). Using the

negative conditioning type judgement, using (21), at T3 the classifier now shifts the dis-

tribution using (21) to p(s : PSq|s : ¬Y) = 1, p(s : YSq|s : ¬Y) = 0 and p(s : YC|s : ¬Y)

= 0 before the judgement s : P ∧ ¬Y is made at T4. This early use of the negative

type judgement provides a model for increased subsequent processing speed, however

it does not stipulate exact timing at which the negative type inference is made in terms

of phonetic form– Brennan and Schober (2001)’s results suggest this information be-

comes available very quickly upon detection of the substitution repair onset. Finally

at T5: ‘square’ given p(s : PSq | s : PSq) = 1, the distribution remains unchanged.

The last word could be taken as an instance of over-specification again here, due to the

lack of information gain in the conditional distribution of referents, however, we follow

Fernández (2013)’s idea that this is a likely completion of the referring expression, due

to the fact syntactic completeness is generally preferred.

5 Discussion

We have presented a novel way of using Knuth (2005, 2006)’s work on probabilistic

lattices which has some nice predictions for small reference domains. DS-TTR, whilst

currently not fully implemented probabilistically, has potential for fully probabilistic
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Figure 10: Incremental interpretation of a repaired referring expression in DyLan. The

distribution over referents is shown in the bar graphs on the right. The conditioning

type judgements label the edges. Repaired edges are dashed.
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Figure 11: Probability distributions for the objects given maximal incremental semantic

information in a repaired utterance

parsing and generation in practice.13

RT lattices show a nice derivation of the standard probability axioms of probabilis-

tic TTR, in line with the characterization of them as a set of types partially ordered

by ⊑. This means, given prior assignment of values to the join-irreducible elements,

all other probabilities are derivable in terms of the degree to which types include each

other. We showed the equivalence of ⋗ and ∧, noted by Cooper (2012) holds in terms

of probability, while the natural join in RT lattices ⋖ is not equivalent to disjunction

∨ in type judgements, due to type lattices generally not being complemented. There

are many possible paths for research in probabilistic TTR, but hopefully this lattice

characterization is useful for them.

One of the potential draw-backs of the approach is complexity blow-up and scala-

bility. There is exponentiation of the size of the lattices in the size of the disjoint atoms,

however not necessarily in their construction time. The other obvious difficulty when

scaling to bigger domains is defining the domain of type judgements. However the mo-

tivation of TTR is a good one: an agent should only reason with the relevant types to a

situation, rather than regarding the whole universe and all the type judgements therein,

and using a Questions-Under-Discussion model (Ginzburg, 2012) for relevant issues

could help in this regard.

As for reference processing, our model captures over-specification phenomena in

REG in terms of probability, but not directly in terms of its decision process the

way Dale and Reiter (1995)’s Incremental Algorithm does. However given the cross-

linguistic evidence (Rubio-Fernández, 2011) this may not be a weakness– given over-

specification may be tied to specific syntactic constructions in specific situations for

a given language, it may not be appropriate to model it in the conceptualization stage

only, but rather as a side-effect of incremental informativity (Fernández, 2013), which

our model captures in its incremental reference resolution. In addition, our framework’s

processing models how listeners process self-repairs realistically, reasoning about the

revocation of a type judgement itself rather than predicting the outcome through posi-

tive evidence alone, in line with Brennan and Schober (2001)’s results.

6 Conclusion

We have discussed a dialogue model which incorporates incremental probabilistic in-

ference and efficient methods for constructing probabilistic RT lattices ordered by

13See https://bitbucket.org/dylandialoguesystem/dsttr for the latest implementation.
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the subtype relation, demonstrating their efficacy for realistic reference processing.

The model helps explain the experimental results on repaired referring expressions

(Brennan and Schober, 2001), and also has a probabilistic characterization of over-

specification in terms of incremental relevance. While we model a simple reference

domain here, this is intended to be a general interpretation and generation model for

dialogue. For this more general purpose, an order-based probabilistic semantics is

more suitable than a model conditioning on pre-defined properties of objects as is the

tendency for reference resolution and REG algorithms in the literature. We wish to

explore the scalability of RT lattices to other domains and their learning capacity in

future work.
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