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Abstract

For dialogue systems to become robust, they must be able to de-
tect disfluencies accurately and with minimal latency. To meet
this challenge, here we frame incremental disfluency detection
as a word-by-word tagging task and, following their recent suc-
cess in Spoken Language Understanding tasks, we test the per-
formance of Recurrent Neural Networks (RNNs). We exper-
iment with different inputs for RNNs to explore the effect of
context on their ability to detect edit terms and repair disfluen-
cies effectively. Although not eclipsing the state of the art in
terms of utterance-final performance, RNNs achieve good de-
tection results, requiring no feature engineering and using sim-
ple input vectors representing the incoming utterance as their
training input. Furthermore, RNNs show very good incremen-
tal properties with low latency and very good output stability,
surpassing previously reported results in these measures.
Index Terms: disfluency detection, incremental processing, di-
alogue systems, recurrent neural network

1. Introduction

Disfluencies, such as edit terms and self-repairs, are pervasive in
human dialogue. A dialogue system which detects them appro-
priately is in a strong position to interpret their communicative
meaning, such as an indication the speaker is having difficulty
continuing their contribution, or finds their original utterance
sub-optimal for current purposes and needs to repair it. Addi-
tionally, in a practical system, the performance of downstream
consuming components to a disfluency detector such as Natural
Language Understanding (NLU) can be improved with knowl-
edge of disfluent regions of incoming utterances.

While there has been substantial work on disfluency detec-
tion, with state-of-the-art approaches achieving high accuracy
[1, 2], much of it has taken transcripts to be texts rather than
incoming speech, with the aim of ‘cleaning’ these texts of dis-
fluent material for subsequent post-processing. This approach is
suboptimal if we aim for disfluency detection to compute mean-
ing from repairs and edit terms, which is not only psychologi-
cally valid [3] but also practical for a dialogue system aiming to
compute deep understanding of user utterances.

The aspect of disfluency detection we focus on in this paper,
in line with recent development in dialogue systems [4], is the
desideratum to be strongly incremental: it must function with
minimal latency as it consumes word-by-word input and do so
without changing its original hypotheses very often, or at all,
avoiding ‘jittering’ output that is unhelpful to consuming com-
ponents and outputting its best predictions as early as possible.
Approaches focussing on incremental performance have been
rare: only [5] and [6] report word-by-word incremental perfor-
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mance measures in addition to utterance-final results, so we use
these as points of departure.

Here we investigate how the recent advances shown by the
use of Recurrent Neural Networks (RNNs) in statistical lan-
guage modelling [7, 8], and in spoken language understanding
(SLU) [9], can be applied to incremental disfluency detection.
We train and test a simple Elman RNN [10] for the task, ex-
perimenting with different input which varies in terms of the
context of the utterance available at a given word position, and
different input representations (word vs. word + POS tags) to
see how this affects performance on disfluency detection. Now
we describe the task in detail with our novel approach.

2. Incremental Disfluency Detection

We focus on detecting speech repairs with the tripartite structure
of reparandum-interregnum-repair originally proposed by [11],
as in (1) and as in the bottom braces in Fig. 1.

John [likes + {uh} loves] Mary
S~ S~ =

reparandum  interregnum  repair

€]

While the majority of approaches since the beginning of
the disfluency detection challenge in [12] focus on reparandum
word detection, we note there are cases where the entire struc-
ture of the repair is needed to calculate meaning — see (2) where
access to “the oranges” resolves the anaphoric “them”.

@

“have the engine [ take the oranges to Elmira, + { um, I
mean, } take them to Corning ] ” [14]

Furthermore, we wish to detect all edit terms, not just those
within interregna, which, along with more markedly lexicalised
fillers such as ‘uh’ and ‘um’, comprise phrasal edit terms such
as ‘you know’ and ‘I mean’. We consider their contribution part
of an utterance’s meaning in conversation [15] and therefore
part of the meaning of a user’s utterance in a dialogue system
setting. While edit terms can form interregna, isolated, non-
repair edit terms tend to indicate forward looking trouble from
conversation participants [16].

Given this motivation, in line with [6], we not only eval-
uate the task of reparandum word identification, but consider
the whole repair structure, focussing on improving the F-score
(F1) Fs in (3) for reparandum 7m, interregnum ¢ and repair
phase words rp. For comparison to previous systems we also
report the reparandum word detection F1 which we call F,.,.
For evaluating edit term detection (which subsumes interregna
detection) we use a per-word F1 measure we call F.. Further-
more, in addition to utterance-final performance, we train and
evaluate our systems for their incremental performance, with
appropriate metrics explained in §4.
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A flight [toBoston + { uhImean }
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to Denver | on Friday

rm—5 rpSub

reparandum

interregnum

repair

Figure 1: An utterance with our incrementally-oriented tag scheme and the traditional repair disfluency segmentation [11, 17]

pr— {rm, ’L’, ,r,p}cor'rect _ {rm, i, Tp}co'rv‘ect
. =2 x prXr
pr+r

We treat disfluency detection as a word-by-word tagging
task, where our system outputs the predicted tag for the current
word as it consumes utterances strictly word-by-word. Having
said this, contrary to the left-to-right order of the structure in (1),
we only detect reparandum words upon consuming the repair
onset, the word after the possibly null interregnum, e.g. ‘loves’
in (1) or the second ‘to’ in Fig. 1, rather than predict reparanda
before this point. Here our incremental tagging representation
tags the repair onset word with the absolute distance back to
the start of the reparandum in number of words (see Fig. 1).
From this scheme the original tripartite bracketing structure is
recoverable incrementally, albeit with the delay in detecting the
reparandum (see the bottom of Fig. 1), assuming the following
two-part repair detection process:

1. The repair onset is detected, and with it, the distance back
to the reparandum onset, solving the ‘continuation problem’
[18] as to how to integrate previous material in the utterance
with the current word. Generally, if the current word contin-
ues the previous word fluently it is tagged f,! however if it
continues a word ordered sequentially n words back, repair-
ing the word sequence from there up to the previous word,
then this is tagged rm—[n].

2. In the current and subsequent words the decision is made
whether a given word is in the middle of the repair phase,
tagging it rp, or the final word in the repair, in which case
classify it as having substituted (which may mean repeated)
the reparandum phase, tagging it rpSub, or over-written
(deleted) it, tagging it 7pDel. Once phase 2 is over and a
repair end tag has been outputted, the repair is over.>

For repair onset tags we use rm—{1...8}. Reparandum
lengths longer than 8 words are very sparse and so in training we
tag these as rm—8. This assumption does not hinder potential
detection performance,® whilst greatly cutting down on sparsity
of tags. The repair onset tags combine with the repair end tags
rpDel and rpSub, which, along with a fluent token f and the
edit word token e, gives 27 training tags.*

3. RNN:s for Disfluency Detection

Recurrent neural networks (RNNs, see, e.g., [10]) have been
successful in a variety of NLP tasks, yet to our knowledge this

The fluent f tag will largely be suppressed from here, with any
words apparently untagged having this tag in practice.

2Interspersed with these two tasks is edit term detection, tagging
words e, which also serves as interregnum detection when this tag is
outputted before a repair onset.

3This allows a near perfect recall of all reparandum tokens with a
ceiling on F,.p, at 0.996 on our validation set.

4We found rp indicating a mid repair phase word as its own separate
tag was unnecessary in training, but can be re-introduced in decoding
as will be explained.

850

embeddings

for words -(n-1)..t  pigden
layer ¢ output softmax
layer over tag set ¢
MM
D —= repair —>
decoder

input context
window of

words t-(n-1)..t
y/storage

hidden
layer ¢-1

Figure 2: Elman RNN architecture and decoding pipeline

is the first time they have been applied to incremental disfluency
detection. As repair disfluencies are in general very short, with a
power law decay in the distribution of reparandum lengths [19],
and frequently with crossed serial dependencies [20], RNNs
are well placed for the task: the short-term memory need only
last a few words, but effective use of this memory for com-
puting parallelism of substitution repairs is required. The aim
of this work is to investigate how far one can succeed without
careful feature selection from language models [6] or parsing-
based approaches which explicitly string align repairs [20, 5],
but learn purely from input contexts and design neural net train-
ing regimes to perform best at disfluency detection.

In addition to repair detection, edit term detection should
benefit from recent deep learning techniques for word meaning
representations. Edit terms such as uh, um and disfluent you
know’s are known to have a characteristic vocabulary, so the
use (and learning) of embedded vector word representations (as
in [21]) in an RNN should result in learning network-internal
distinctions between edit terms and fluent words.

Anticipating the Vanishing Gradient problem (see [8])
whereby sequences longer than a few steps long struggle to
make use of information back in time from the current input,
we investigate how much short-term memory is required for de-
tecting disfluencies, and what adjustments need to be made to
combat the problem. We do that here by investigating incre-
mental context and the extent to which previous words need
to be explicitly presented to the network to allow for effective
learning and prediction.

3.1. Architecture and parameters

Input and word embeddings Following [9], we use 1-of-N,
or ‘one-hot’, vectors as our raw input to the network, how-
ever these one-hot representations are not used by the network
in learning and decoding directly but provide unique indices
to dense vectors in a word embedding matrix. We experi-
mented with both randomly initialised and pre-learned embed-
dings which are further updated during training to become more
attuned to our detection task. We found using vectors from ex-
ternal sources did not significantly help disfluency detection,
however using a word embedding matrix pre-trained from our
disfluency detection training data cleaned of disfluencies, fol-



lowing the notion of a ‘clean’ language model by [20], was
marginally more effective than random initialisation. We found
an embedding dimension of 50 worked best in initial tests.

Backwards-looking context windows Again following
[9], we use context windows rather than just inputting one word
representation into the network at a time. However, as we are
interested in strong left-to-right incrementality we do not allow
look-ahead to words beyond the current prefix being consumed,
so our contexts are, like n-gram language models, linearly back-
wards from the current word rather than surrounding it. We
experiment with different lengths and report the different out-
comes arising from these choices in our results in §6. As in [9],
the internal representation of context windows of length n in
the network is created through the ordered concatenation of the
n corresponding word embedding vectors of size 50, resulting
in an input vector to the network of dimension R5".

Architecture and activation functions In addition to our
embedding layer, we use a (recurrent) hidden layer of 50 nodes
and an output layer the size of our training tag set (27 nodes).
We found in early testing hidden layer sizes of over 50 tended to
result in over-fitting on the training data. We use a standard El-
man RNN, where the output from the hidden layer at time ¢t—1
is stored and then fed as an input vector, along with the word
embedding vectors, to the hidden layer at time ¢. See Fig. 2 for
the schematic overall disfluency detection architecture.

Mathematically, the standard Elman-type RNN dynamics
in the recurrent hidden layer at time ¢ is as in (4), where the
hidden layer h(t) is calculated as the Sigmoid function (5) of
the addition of the weight matrix U’ applied via dot product to
the current input vector x(¢) and the weight matrix V"’ applied
via dot product to the stored previous value of the hidden layer
attime t — 1,1i.e. h(¢t—1).

h(t) = f(U'z(t) + V'h(t-1))

1
@)=

“
®

We use the standard softmax function for the node activa-
tion function of the output layer at time ¢: for the output layer
o(t) is the softmax of the dot product of the weight matrix W’
and the current hidden layer A(t) as in (6), with the standard
softmax definition for a given real value x; in a set of real val-
ues x1..Tn given in (7).

o(t) = G(W'h(t))
evi

GTi) = ==+

j=1€"

(©6)
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Learning: error function and parameter update As is
standard in tagging tasks for RNNs [8] we use negative log like-
lihood loss (NLL) as a cost function and use stochastic gradient
descent over the parameters to be learned (weight matrices U’,
V' and W' from equations (4) and (6), plus the embedding vec-
tors) to minimize it. The error we are interested in is F-loss (i.e.
1 - Fs) for each batch, in the spirit of [22], however as this is
non-differentiable, we use the standard NLL approximation.

Batch sizes and back-propagation As our focus is on
incrementality, we update our parameters after every word is
consumed in training. As an utterance is consumed word by
word, the training batch length k£ goes up from a single win-
dow context at the beginning of the utterance (with the win-
dow padded by beginning of sentence vectors) to our maximum
back-propagation through time distance bp. We found a bp of
9 was useful to avoid the vanishing gradient problem, but also
fits with our tag set for repair identification: as explained in §2,
limiting this to 8 words back does not hinder performance.
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Figure 3: Markov model for repairs, edit terms and fluent words

We optimise the other hyper-parameters of our RNNs on the
validation set. We found using a learning rate of 0.005 worked
best and we also use L2 regularisation on the parameters to be
learned with a weight of 0.0001 to avoid over-fitting.

3.2. Decoding optimization: Repair Markov model

Disfluency detection from the RNN operates locally, just tag-
ging the current word. This means the network can output il-
legal tag sequences not conforming to the repair structure in
Fig. 1. To combat this we add a Viterbi decoder to output the tag
sequence that maximises the joint score of the tag’s probability
in the softmax distribution from the RNN and the probability
of the tag given the previous tags as stipulated by the Markov
model in Fig. 3. This ensures that for all repair onsets (allow-
ing entry to state 7m.S in Fig. 3) there must be a repair end tag
rpSub or rpDel to enter the state rpFE, allowing a legal end of
utterance tag, while a mid repair (rpM) or edit term within a
repair phase (e R) does not. We do not train the Markov model,
however, following the idea of cost functions for this task [2, 6]
we stipulate a boosted probability of entering the state rm.S,
such that for all states that can transition into »m.S, that transi-
tion is twice as likely as all other transitions out of that state. In
other cases we stipulate uniform probabilities in out-going tran-
sitions. Using this marginally improved overall accuracy scores
and ensured legal repair sequences were outputted.

From an incremental perspective, while Viterbi decoding
need not be expensive at each step as the tag sequence hypothe-
sis trellis for the utterance can be stored word-by-word, there is
the danger of output jitter’: undetected repair onsets may have
their corresponding repair ends detected, meaning they are sub-
sequently detected, or repair onsets initially hypothesised can
be revoked. We investigate this in our evaluation.

4. Evaluation Criteria

Accuracy metrics In addition to reparandum word accuracy
F,., and repair structure accuracy F (see (3) above), we eval-
uate word tagging accuracy for edit term words F., which in-
cludes interregna. For repairs we use the incremental metrics
in [6], evaluating the delayed accuracy (DA) [5] on reparan-
dum words detected n words back from the current word where
n € {1..6}, against the utterance-final gold standard disfluency
annotations, using the mean of the 6 F-scores.

Timing metrics We use [5]’s two time-to-detection met-
rics: the two average distances (in numbers of words) consumed
before first detection of gold standard repairs, one from the
reparandum start, TD,m and one from the repair start, TDrp.5

5These measures only apply to repairs detected correctly.



System Input (context P27 — Fy Feq
size n)
Elman word (2) 0.623 0.593 0.872
Elman word (3) 0.689 | 0.661 0.873
Elman word+POS (2) 0.711 0.689 | 0.902
Elman word+POS (3) 0.700 | 0.677 0.899
H&P’14 | word 0.741 0.698 0.880
H&P’14 | word+POS 0.779 | 0.735 0.937

Table 1: F1 results for RNNs with different input types

System Input (context TDyp i) — DA EO
size n)
Elman word (2) 1.01 2.37 0.600 0.64
Elman word (3) 1.02 2.49 0.659 1.03
Elman word+POS (2) 1.03 2.52 0.681 1.30
Elman word+POS (3) 1.02 2.55 0.674 1.50
H&P'14 | word I.16 2.76 0.662 | 423
H&P’14 | word+POS 1.16 2.79 0.698 3.95

Table 2: Incremental results for RNNs with different input types

1.0

F1 accuracy for tag

epochs

Learning curve progression of F1 accuracy for 5 tags

Figure 4:

This gives us an idea of the responsiveness of our detectors,
where minimal latency is preferable.

Diachronic metrics To measure stability of disfluency hy-
potheses over time and the level of output jitter, we use [23]’s
edit overhead (EO) metric. EO measures the proportion of ed-
its (add, revoke)® applied to a processor’s output structure that
are unnecessary— in our case the edits of concern are the word
classifications as fluent (f) or reparandum (rm), repair (rp) or
edit term (e), derivable from our tag scheme. Rather than eval-
uating EO against the current gold standard labels, we use a
mark-up termed the incremental repair gold standard [6]: this
does not penalise lack of detection of a reparandum word rm
as a bad edit until the corresponding repair start of that rm has
been consumed, reflecting the repair processing approach in §2.
Also the repair gold standard here is in fact the final output of
our RNNs rather than the ground truth— this is done to isolate
the evolution of the final hypotheses, rather than evaluate accu-
racy, which the metrics F;,, Fs, Fe and DA indicate.

5. Experimental Set-up

We experiment with different context input windows (lengths 2
and 3) and different input types (words vs. words + POS tags)
to the RNNs as our independent variables. We test RNNs for
their accuracy on output representations as in Fig. 1. Our tag set
allows incremental derivation of repair structures as explained
above when the output is finally computed through our repair
Markov model. We implement our RNNs using Theano [24] as
an extension to the code in [9].

Data We train on the standard Switchboard disfluency
training data (all conversation numbers beginning sw2*,sw3*
in the Penn Treebank III release: 100k utterances, 650K words)
and use the standard heldout data (PTB III files sw4[5-9]*: 6.4K

SWe do not use substitution edits here, but substitutions are implic-
itly realized by a revoke followed by an add for a given word tag.
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utterances, 49K words) as our validation set. We test on the
standard test data (PTB III files 4[0-1]*) with partial words and
punctuation removed from all files for fair comparison to other
systems. We compare to the incremental disfluency detector in
[6] which we will call H&P’ 14 from here, running this with and
without POS tag input for fair comparison.

Stopping criterion We train all RNNs for a maximum of
50 epochs with a stopping criterion that if there is no improve-
ment on the best F,.,,, score on the validation set after 10 epochs,
training is halted. We found in early tests any longer than this
did not result in improved performance. The best performing
epoch’s weights after stopping are used in testing.

6. Results and Discussion

Utterance-final accuracies are shown in Table 1. Our best
F,, is reasonably competitive with H&P’ 14 words-only model,
achieving 0.711 on the test set with context size 2 using POS
tags.” F, does not degrade significantly compared to this mea-
sure, achieving 0.689, showing good accuracy on the repair
structures. Performance on editing terms (F.) was consistently
good, being marginally below the H&P’ 14 model in the with-
out POS tags conditions. As shown in Table 2, incremen-
tal performance of our RNNs was better overall than the best
utterance-final settings in H&P’14, achieving low EO in our
best utterance-final setting at 1.30% and minimal latency, be-
ing only marginally above the 1 word minimum achievable for
TDyp. In the DA measure our best performing word-only RNN
is marginally below H&P’14’s best word-only model, and our
best word+POS RNN achieves a competitive 0.681.

As for the effect of context size, without POS information
inputs of length 2 fare much worse than length 3, however with
POS information they outperform the length 3 condition. We
observe an over-fitting problem when using the longer context
lengths, as the local dependencies within the word window tend
to be learned by the network for detecting local repair patterns
in the training data which do not generalise to the test data.

As shown in Fig. 4, the best performance was generally
reached after a single epoch for the e tag, however rp—[n] had
steady learning curves, with larger n taking longer to converge.
The vanishing gradient problem is evident here for tags requir-
ing longer distance dependencies, as is the problem of sparsity,
however the network still manages to improve through training.
A challenge we undertook here was investigating how tempo-
ral information in an RNN could overcome the need for explicit
backtracking (as in H&P’14’s model) — for shorter reparanda it
is doing this quite successfully.

7. Conclusion

We have presented incremental disfluency detection as a word-
by-word tagging task and test the performance of RNNs. While
we do not eclipse state-of-the-art results, the RNNs here have
had no feature engineering, and show very good incremental
properties with low latency and good output stability. In future
we wish to experiment with other deep learning architectures,
such as the LSTM, to improve the recognition of disfluencies in
the strongly time-linear way we present here.
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7We achieve 0.730 on the validation set with this system.
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